Proving formula for math expectation The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraWhat is the relationship between $int_a^infty x f(x) dx$ and $E(X)$?Tail sum for expectationWhat is the rationale behind the evaluation of the Expectation operator?For a distribution function $F(x)$ and constant $a$, integral of $F(x + a) - F(x)$ is $a$.For a non-negative absolutely continuous random variable $X$, with distribution $F$. Why is $lim_trightarrow inftyt(1-F(t))=0$?Prove that mutual information between integer and fractional parts goes to zeroExpectation of a continuous random variable explained in terms of the CDFConditional expectation for bivariate normal distributionDensity function and expectation of a random variableLimits regarding Cumulative Distribution Function when Expectancy is finiteFinding the Expectation and Variance, given the distribution function and density function for a continuous random variable
Why doesn't a hydraulic lever violate conservation of energy?
Word to describe a time interval
Homework question about an engine pulling a train
Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
Can I visit the Trinity College (Cambridge) library and see some of their rare books
Is this wall load bearing? Blueprints and photos attached
How to make Illustrator type tool selection automatically adapt with text length
How do you keep chess fun when your opponent constantly beats you?
Single author papers against my advisor's will?
Would an alien lifeform be able to achieve space travel if lacking in vision?
Loose spokes after only a few rides
should truth entail possible truth
Make it rain characters
How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?
Is 'stolen' appropriate word?
Circular reasoning in L'Hopital's rule
Why did Peik Lin say, "I'm not an animal"?
Can withdrawing asylum be illegal?
Store Dynamic-accessible hidden metadata in a cell
What to do when moving next to a bird sanctuary with a loosely-domesticated cat?
Didn't get enough time to take a Coding Test - what to do now?
Is an up-to-date browser secure on an out-of-date OS?
Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?
Proving formula for math expectation
The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraWhat is the relationship between $int_a^infty x f(x) dx$ and $E(X)$?Tail sum for expectationWhat is the rationale behind the evaluation of the Expectation operator?For a distribution function $F(x)$ and constant $a$, integral of $F(x + a) - F(x)$ is $a$.For a non-negative absolutely continuous random variable $X$, with distribution $F$. Why is $lim_trightarrow inftyt(1-F(t))=0$?Prove that mutual information between integer and fractional parts goes to zeroExpectation of a continuous random variable explained in terms of the CDFConditional expectation for bivariate normal distributionDensity function and expectation of a random variableLimits regarding Cumulative Distribution Function when Expectancy is finiteFinding the Expectation and Variance, given the distribution function and density function for a continuous random variable
$begingroup$
In a book I met a formula for math. expectation of a random variable $xi$ with distribution function $F(x)$:
$$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx$$
I wonder how do I prove it?
My attempt follows:
$Mxiequivint_-infty^inftyxdF(x)=lim_ato-infty^btoinftyint_a^bxdF(x)$
Integrating in parts, I obtain
$int_a^bxdF(x)=(xF(x))rvert_a^b-int_a^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx-int_0^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx+int_0^b(1-F(x))dx-b=[-int_a^0F(x)dx+int_0^b(1-F(x))dx]+b(F(b)-1)-aF(a).$
Passing to the limit, I get
$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx-lim_ato-inftyaF(a)+lim_btoinftyb(F(b)-1)$
So in order to prove the initial statement, I need to prove that for arbitrary distribution function $F$
$lim_ato-inftyaF(a)=0$
and
$lim_btoinftyb(F(b)-1)=0$
however I have no idea how to prove it and moreover I doubt that it's true.
probability probability-distributions
$endgroup$
add a comment |
$begingroup$
In a book I met a formula for math. expectation of a random variable $xi$ with distribution function $F(x)$:
$$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx$$
I wonder how do I prove it?
My attempt follows:
$Mxiequivint_-infty^inftyxdF(x)=lim_ato-infty^btoinftyint_a^bxdF(x)$
Integrating in parts, I obtain
$int_a^bxdF(x)=(xF(x))rvert_a^b-int_a^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx-int_0^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx+int_0^b(1-F(x))dx-b=[-int_a^0F(x)dx+int_0^b(1-F(x))dx]+b(F(b)-1)-aF(a).$
Passing to the limit, I get
$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx-lim_ato-inftyaF(a)+lim_btoinftyb(F(b)-1)$
So in order to prove the initial statement, I need to prove that for arbitrary distribution function $F$
$lim_ato-inftyaF(a)=0$
and
$lim_btoinftyb(F(b)-1)=0$
however I have no idea how to prove it and moreover I doubt that it's true.
probability probability-distributions
$endgroup$
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34
add a comment |
$begingroup$
In a book I met a formula for math. expectation of a random variable $xi$ with distribution function $F(x)$:
$$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx$$
I wonder how do I prove it?
My attempt follows:
$Mxiequivint_-infty^inftyxdF(x)=lim_ato-infty^btoinftyint_a^bxdF(x)$
Integrating in parts, I obtain
$int_a^bxdF(x)=(xF(x))rvert_a^b-int_a^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx-int_0^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx+int_0^b(1-F(x))dx-b=[-int_a^0F(x)dx+int_0^b(1-F(x))dx]+b(F(b)-1)-aF(a).$
Passing to the limit, I get
$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx-lim_ato-inftyaF(a)+lim_btoinftyb(F(b)-1)$
So in order to prove the initial statement, I need to prove that for arbitrary distribution function $F$
$lim_ato-inftyaF(a)=0$
and
$lim_btoinftyb(F(b)-1)=0$
however I have no idea how to prove it and moreover I doubt that it's true.
probability probability-distributions
$endgroup$
In a book I met a formula for math. expectation of a random variable $xi$ with distribution function $F(x)$:
$$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx$$
I wonder how do I prove it?
My attempt follows:
$Mxiequivint_-infty^inftyxdF(x)=lim_ato-infty^btoinftyint_a^bxdF(x)$
Integrating in parts, I obtain
$int_a^bxdF(x)=(xF(x))rvert_a^b-int_a^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx-int_0^bF(x)dx=bF(b)-aF(a)-int_a^0F(x)dx+int_0^b(1-F(x))dx-b=[-int_a^0F(x)dx+int_0^b(1-F(x))dx]+b(F(b)-1)-aF(a).$
Passing to the limit, I get
$Mxi=-int_-infty^0F(x)dx+int_0^infty(1-F(x))dx-lim_ato-inftyaF(a)+lim_btoinftyb(F(b)-1)$
So in order to prove the initial statement, I need to prove that for arbitrary distribution function $F$
$lim_ato-inftyaF(a)=0$
and
$lim_btoinftyb(F(b)-1)=0$
however I have no idea how to prove it and moreover I doubt that it's true.
probability probability-distributions
probability probability-distributions
asked Mar 24 at 17:14
NickNick
1514
1514
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34
add a comment |
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If the expectation is finite then both limits $$limlimits_ato-inftyint_-infty^a x,dF(x) text and limlimits_btoinftyint_b^infty x,dF(x)$$
are zero. Then
$$
0=limlimits_ato-inftyint_-infty^a x,dF(x) leq limlimits_ato-inftya int_-infty^a dF(x) =limlimits_ato-infty aF(a)leq 0.
$$
And
$$
0=limlimits_btoinftyint_b^infty x,dF(x) geq limlimits_btoinftyb int_b^infty dF(x) =limlimits_btoinfty b(1-F(b))geq 0.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160795%2fproving-formula-for-math-expectation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If the expectation is finite then both limits $$limlimits_ato-inftyint_-infty^a x,dF(x) text and limlimits_btoinftyint_b^infty x,dF(x)$$
are zero. Then
$$
0=limlimits_ato-inftyint_-infty^a x,dF(x) leq limlimits_ato-inftya int_-infty^a dF(x) =limlimits_ato-infty aF(a)leq 0.
$$
And
$$
0=limlimits_btoinftyint_b^infty x,dF(x) geq limlimits_btoinftyb int_b^infty dF(x) =limlimits_btoinfty b(1-F(b))geq 0.
$$
$endgroup$
add a comment |
$begingroup$
If the expectation is finite then both limits $$limlimits_ato-inftyint_-infty^a x,dF(x) text and limlimits_btoinftyint_b^infty x,dF(x)$$
are zero. Then
$$
0=limlimits_ato-inftyint_-infty^a x,dF(x) leq limlimits_ato-inftya int_-infty^a dF(x) =limlimits_ato-infty aF(a)leq 0.
$$
And
$$
0=limlimits_btoinftyint_b^infty x,dF(x) geq limlimits_btoinftyb int_b^infty dF(x) =limlimits_btoinfty b(1-F(b))geq 0.
$$
$endgroup$
add a comment |
$begingroup$
If the expectation is finite then both limits $$limlimits_ato-inftyint_-infty^a x,dF(x) text and limlimits_btoinftyint_b^infty x,dF(x)$$
are zero. Then
$$
0=limlimits_ato-inftyint_-infty^a x,dF(x) leq limlimits_ato-inftya int_-infty^a dF(x) =limlimits_ato-infty aF(a)leq 0.
$$
And
$$
0=limlimits_btoinftyint_b^infty x,dF(x) geq limlimits_btoinftyb int_b^infty dF(x) =limlimits_btoinfty b(1-F(b))geq 0.
$$
$endgroup$
If the expectation is finite then both limits $$limlimits_ato-inftyint_-infty^a x,dF(x) text and limlimits_btoinftyint_b^infty x,dF(x)$$
are zero. Then
$$
0=limlimits_ato-inftyint_-infty^a x,dF(x) leq limlimits_ato-inftya int_-infty^a dF(x) =limlimits_ato-infty aF(a)leq 0.
$$
And
$$
0=limlimits_btoinftyint_b^infty x,dF(x) geq limlimits_btoinftyb int_b^infty dF(x) =limlimits_btoinfty b(1-F(b))geq 0.
$$
answered Mar 25 at 0:59
NChNCh
7,1153825
7,1153825
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160795%2fproving-formula-for-math-expectation%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I guess the last 2 assumptions should be true if the expected value is finite.
$endgroup$
– kludg
Mar 24 at 17:34