Convergence of the series $sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright) $ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Series $sum fracsin(n)n cdot left(1+cdots +frac1nright)$ convergence questionAm I right in my conclusions about these series?How to deal with series of the form $sum^infty_n=1f(n)^(-1)^n$does the series converge? $sum_n=1^inftyleft(frac 35^n+frac 2nright) $Convergence for $sum _n=1^infty :fracsqrtn+1-sqrtnn^a$Does the series convergeShow that the series $sumlimits_k=1^inftyfracx^kk$ does not converge uniformly on $(-1,1)$.Calculate the following convergent series: $sum _n=1^infty :frac1nleft(n+3right)$Convergence or divergence of a series given divergent seriesHow can I show that the series $sum _k =1^infty frac1k (1 + (1/k))^k$ is divergent.
Keeping a retro style to sci-fi spaceships?
Would an alien lifeform be able to achieve space travel if lacking in vision?
Am I ethically obligated to go into work on an off day if the reason is sudden?
What can I do if neighbor is blocking my solar panels intentionally?
Why can't devices on different VLANs, but on the same subnet, communicate?
How to support a colleague who finds meetings extremely tiring?
How to determine omitted units in a publication
Is 'stolen' appropriate word?
Deal with toxic manager when you can't quit
Does Parliament need to approve the new Brexit delay to 31 October 2019?
Didn't get enough time to take a Coding Test - what to do now?
how can a perfect fourth interval be considered either consonant or dissonant?
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
Variable with quotation marks "$()"
My body leaves; my core can stay
University's motivation for having tenure-track positions
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
Do warforged have souls?
Working through the single responsibility principle (SRP) in Python when calls are expensive
What force causes entropy to increase?
Mortgage adviser recommends a longer term than necessary combined with overpayments
How to read αἱμύλιος or when to aspirate
What happens to a Warlock's expended Spell Slots when they gain a Level?
Single author papers against my advisor's will?
Convergence of the series $sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright) $
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Series $sum fracsin(n)n cdot left(1+cdots +frac1nright)$ convergence questionAm I right in my conclusions about these series?How to deal with series of the form $sum^infty_n=1f(n)^(-1)^n$does the series converge? $sum_n=1^inftyleft(frac 35^n+frac 2nright) $Convergence for $sum _n=1^infty :fracsqrtn+1-sqrtnn^a$Does the series convergeShow that the series $sumlimits_k=1^inftyfracx^kk$ does not converge uniformly on $(-1,1)$.Calculate the following convergent series: $sum _n=1^infty :frac1nleft(n+3right)$Convergence or divergence of a series given divergent seriesHow can I show that the series $sum _k =1^infty frac1k (1 + (1/k))^k$ is divergent.
$begingroup$
Does the following series converge or diverge?
beginequation
sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright)
endequation
I have noticed that each of partial sum telescopes leaving me with:
beginequation
S_n = ln(n) - sum^n_k=2frac1k
endequation
I know that harmonic series are divergent, I am not sure how to use that fact in this case though. How should one follow from here?
real-analysis sequences-and-series divergent-series
$endgroup$
add a comment |
$begingroup$
Does the following series converge or diverge?
beginequation
sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright)
endequation
I have noticed that each of partial sum telescopes leaving me with:
beginequation
S_n = ln(n) - sum^n_k=2frac1k
endequation
I know that harmonic series are divergent, I am not sure how to use that fact in this case though. How should one follow from here?
real-analysis sequences-and-series divergent-series
$endgroup$
2
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
2
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19
add a comment |
$begingroup$
Does the following series converge or diverge?
beginequation
sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright)
endequation
I have noticed that each of partial sum telescopes leaving me with:
beginequation
S_n = ln(n) - sum^n_k=2frac1k
endequation
I know that harmonic series are divergent, I am not sure how to use that fact in this case though. How should one follow from here?
real-analysis sequences-and-series divergent-series
$endgroup$
Does the following series converge or diverge?
beginequation
sum^infty_n=2 left(lnleft(fracnn-1right) - frac1nright)
endequation
I have noticed that each of partial sum telescopes leaving me with:
beginequation
S_n = ln(n) - sum^n_k=2frac1k
endequation
I know that harmonic series are divergent, I am not sure how to use that fact in this case though. How should one follow from here?
real-analysis sequences-and-series divergent-series
real-analysis sequences-and-series divergent-series
edited Mar 24 at 17:19
rtybase
11.6k31534
11.6k31534
asked Mar 24 at 16:15
TomaszTomasz
1646
1646
2
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
2
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19
add a comment |
2
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
2
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19
2
2
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
2
2
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$logleft( fracnn-1right) -frac1n=-logleft(fracn-1nright)-frac1n= -logleft(1-frac1nright)-frac1n$$
$$ -logleft( 1-frac1nright)=frac1n+frac12n^2+oleft( frac1n^2right)$$
$$logleft(fracnn-1right)-frac1n =frac12n^2+oleft( frac1n^2right)$$ The series is therefore convergent.
$$underlinetextbfAbout the limit of this sum:$$
Let $gamma$ be the limit. Using partial summation Lemma:
$$sum_nle xfrac1n=fraclfloorxrfloorx+int_1^xfraclfloortrfloort^2dt= fraclfloorxrfloorx+int_1^xfract-tt^2dt $$
$$= fraclfloorxrfloorx+logx-int_1^xfractt^2dt $$ so:
$$sum_nle xfrac1n-logx= fracx+O(1)x-int_1^xfractt^2dt$$
$$=1-int_1^inftyfractt^2dt+ underbraceint_x^inftyfractt^2dt_=O(frac1x)+O(frac1x)$$
$$ sum_nle xfrac1n-logx=gamma+O(frac1x)$$ where: $$gamma= 1-int_1^inftyfractt^2dtapprox 0.57721$$
$endgroup$
add a comment |
$begingroup$
Notice that $$lnleft(fracnn-1 right) = - lnleft(1-frac1nright) = -left(-frac 1 n - frac 1 2n^2 - textsmaller termsright).$$ Thus $$left( lnleft(fracnn-1 right) - frac 1 nright) sim frac 1 2n^2.$$ Thus the series converges by comparison with $sum frac 1 n^2$, and as pointed out in the comments, the series sums to $gamma$, the Euler-Mascheroni constant.
$endgroup$
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
add a comment |
$begingroup$
Using this inequality
$$xgeqln(1+x)geq fracx1+x, forall x>-1 tag1$$
and
$$logleft(fracnn-1right)-frac1n=
logleft(1+frac1n-1right)-frac1n tag2$$
we have
$$0=frac1n-frac1n=
fracfrac1n-11+frac1n-1-frac1noverset(1)leq
logleft(1+frac1n-1right)-frac1noverset(1)leq
frac1n-1-frac1n$$
and as a result, from $(2)$
$$0leq sumlimits_ngeq2left(logleft(fracnn-1right)-frac1nright)leq
sumlimits_ngeq2left(frac1n-1-frac1nright)=\
limlimits_krightarrowinftysumlimits_n=2^kleft(frac1n-1-frac1nright)=
limlimits_krightarrowinftyleft(1-frac1kright)=1$$
and the original series converges.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160726%2fconvergence-of-the-series-sum-infty-n-2-left-ln-left-fracnn-1-righ%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$logleft( fracnn-1right) -frac1n=-logleft(fracn-1nright)-frac1n= -logleft(1-frac1nright)-frac1n$$
$$ -logleft( 1-frac1nright)=frac1n+frac12n^2+oleft( frac1n^2right)$$
$$logleft(fracnn-1right)-frac1n =frac12n^2+oleft( frac1n^2right)$$ The series is therefore convergent.
$$underlinetextbfAbout the limit of this sum:$$
Let $gamma$ be the limit. Using partial summation Lemma:
$$sum_nle xfrac1n=fraclfloorxrfloorx+int_1^xfraclfloortrfloort^2dt= fraclfloorxrfloorx+int_1^xfract-tt^2dt $$
$$= fraclfloorxrfloorx+logx-int_1^xfractt^2dt $$ so:
$$sum_nle xfrac1n-logx= fracx+O(1)x-int_1^xfractt^2dt$$
$$=1-int_1^inftyfractt^2dt+ underbraceint_x^inftyfractt^2dt_=O(frac1x)+O(frac1x)$$
$$ sum_nle xfrac1n-logx=gamma+O(frac1x)$$ where: $$gamma= 1-int_1^inftyfractt^2dtapprox 0.57721$$
$endgroup$
add a comment |
$begingroup$
$$logleft( fracnn-1right) -frac1n=-logleft(fracn-1nright)-frac1n= -logleft(1-frac1nright)-frac1n$$
$$ -logleft( 1-frac1nright)=frac1n+frac12n^2+oleft( frac1n^2right)$$
$$logleft(fracnn-1right)-frac1n =frac12n^2+oleft( frac1n^2right)$$ The series is therefore convergent.
$$underlinetextbfAbout the limit of this sum:$$
Let $gamma$ be the limit. Using partial summation Lemma:
$$sum_nle xfrac1n=fraclfloorxrfloorx+int_1^xfraclfloortrfloort^2dt= fraclfloorxrfloorx+int_1^xfract-tt^2dt $$
$$= fraclfloorxrfloorx+logx-int_1^xfractt^2dt $$ so:
$$sum_nle xfrac1n-logx= fracx+O(1)x-int_1^xfractt^2dt$$
$$=1-int_1^inftyfractt^2dt+ underbraceint_x^inftyfractt^2dt_=O(frac1x)+O(frac1x)$$
$$ sum_nle xfrac1n-logx=gamma+O(frac1x)$$ where: $$gamma= 1-int_1^inftyfractt^2dtapprox 0.57721$$
$endgroup$
add a comment |
$begingroup$
$$logleft( fracnn-1right) -frac1n=-logleft(fracn-1nright)-frac1n= -logleft(1-frac1nright)-frac1n$$
$$ -logleft( 1-frac1nright)=frac1n+frac12n^2+oleft( frac1n^2right)$$
$$logleft(fracnn-1right)-frac1n =frac12n^2+oleft( frac1n^2right)$$ The series is therefore convergent.
$$underlinetextbfAbout the limit of this sum:$$
Let $gamma$ be the limit. Using partial summation Lemma:
$$sum_nle xfrac1n=fraclfloorxrfloorx+int_1^xfraclfloortrfloort^2dt= fraclfloorxrfloorx+int_1^xfract-tt^2dt $$
$$= fraclfloorxrfloorx+logx-int_1^xfractt^2dt $$ so:
$$sum_nle xfrac1n-logx= fracx+O(1)x-int_1^xfractt^2dt$$
$$=1-int_1^inftyfractt^2dt+ underbraceint_x^inftyfractt^2dt_=O(frac1x)+O(frac1x)$$
$$ sum_nle xfrac1n-logx=gamma+O(frac1x)$$ where: $$gamma= 1-int_1^inftyfractt^2dtapprox 0.57721$$
$endgroup$
$$logleft( fracnn-1right) -frac1n=-logleft(fracn-1nright)-frac1n= -logleft(1-frac1nright)-frac1n$$
$$ -logleft( 1-frac1nright)=frac1n+frac12n^2+oleft( frac1n^2right)$$
$$logleft(fracnn-1right)-frac1n =frac12n^2+oleft( frac1n^2right)$$ The series is therefore convergent.
$$underlinetextbfAbout the limit of this sum:$$
Let $gamma$ be the limit. Using partial summation Lemma:
$$sum_nle xfrac1n=fraclfloorxrfloorx+int_1^xfraclfloortrfloort^2dt= fraclfloorxrfloorx+int_1^xfract-tt^2dt $$
$$= fraclfloorxrfloorx+logx-int_1^xfractt^2dt $$ so:
$$sum_nle xfrac1n-logx= fracx+O(1)x-int_1^xfractt^2dt$$
$$=1-int_1^inftyfractt^2dt+ underbraceint_x^inftyfractt^2dt_=O(frac1x)+O(frac1x)$$
$$ sum_nle xfrac1n-logx=gamma+O(frac1x)$$ where: $$gamma= 1-int_1^inftyfractt^2dtapprox 0.57721$$
edited Mar 24 at 17:49
answered Mar 24 at 16:22
HAMIDINE SOUMAREHAMIDINE SOUMARE
2,076212
2,076212
add a comment |
add a comment |
$begingroup$
Notice that $$lnleft(fracnn-1 right) = - lnleft(1-frac1nright) = -left(-frac 1 n - frac 1 2n^2 - textsmaller termsright).$$ Thus $$left( lnleft(fracnn-1 right) - frac 1 nright) sim frac 1 2n^2.$$ Thus the series converges by comparison with $sum frac 1 n^2$, and as pointed out in the comments, the series sums to $gamma$, the Euler-Mascheroni constant.
$endgroup$
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
add a comment |
$begingroup$
Notice that $$lnleft(fracnn-1 right) = - lnleft(1-frac1nright) = -left(-frac 1 n - frac 1 2n^2 - textsmaller termsright).$$ Thus $$left( lnleft(fracnn-1 right) - frac 1 nright) sim frac 1 2n^2.$$ Thus the series converges by comparison with $sum frac 1 n^2$, and as pointed out in the comments, the series sums to $gamma$, the Euler-Mascheroni constant.
$endgroup$
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
add a comment |
$begingroup$
Notice that $$lnleft(fracnn-1 right) = - lnleft(1-frac1nright) = -left(-frac 1 n - frac 1 2n^2 - textsmaller termsright).$$ Thus $$left( lnleft(fracnn-1 right) - frac 1 nright) sim frac 1 2n^2.$$ Thus the series converges by comparison with $sum frac 1 n^2$, and as pointed out in the comments, the series sums to $gamma$, the Euler-Mascheroni constant.
$endgroup$
Notice that $$lnleft(fracnn-1 right) = - lnleft(1-frac1nright) = -left(-frac 1 n - frac 1 2n^2 - textsmaller termsright).$$ Thus $$left( lnleft(fracnn-1 right) - frac 1 nright) sim frac 1 2n^2.$$ Thus the series converges by comparison with $sum frac 1 n^2$, and as pointed out in the comments, the series sums to $gamma$, the Euler-Mascheroni constant.
answered Mar 24 at 16:24
User8128User8128
10.9k1622
10.9k1622
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
add a comment |
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
2
2
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
$begingroup$
It sums to $1-gamma$ as the $frac11$ term is not included and the terms are reversed.
$endgroup$
– Peter Foreman
Mar 24 at 16:39
add a comment |
$begingroup$
Using this inequality
$$xgeqln(1+x)geq fracx1+x, forall x>-1 tag1$$
and
$$logleft(fracnn-1right)-frac1n=
logleft(1+frac1n-1right)-frac1n tag2$$
we have
$$0=frac1n-frac1n=
fracfrac1n-11+frac1n-1-frac1noverset(1)leq
logleft(1+frac1n-1right)-frac1noverset(1)leq
frac1n-1-frac1n$$
and as a result, from $(2)$
$$0leq sumlimits_ngeq2left(logleft(fracnn-1right)-frac1nright)leq
sumlimits_ngeq2left(frac1n-1-frac1nright)=\
limlimits_krightarrowinftysumlimits_n=2^kleft(frac1n-1-frac1nright)=
limlimits_krightarrowinftyleft(1-frac1kright)=1$$
and the original series converges.
$endgroup$
add a comment |
$begingroup$
Using this inequality
$$xgeqln(1+x)geq fracx1+x, forall x>-1 tag1$$
and
$$logleft(fracnn-1right)-frac1n=
logleft(1+frac1n-1right)-frac1n tag2$$
we have
$$0=frac1n-frac1n=
fracfrac1n-11+frac1n-1-frac1noverset(1)leq
logleft(1+frac1n-1right)-frac1noverset(1)leq
frac1n-1-frac1n$$
and as a result, from $(2)$
$$0leq sumlimits_ngeq2left(logleft(fracnn-1right)-frac1nright)leq
sumlimits_ngeq2left(frac1n-1-frac1nright)=\
limlimits_krightarrowinftysumlimits_n=2^kleft(frac1n-1-frac1nright)=
limlimits_krightarrowinftyleft(1-frac1kright)=1$$
and the original series converges.
$endgroup$
add a comment |
$begingroup$
Using this inequality
$$xgeqln(1+x)geq fracx1+x, forall x>-1 tag1$$
and
$$logleft(fracnn-1right)-frac1n=
logleft(1+frac1n-1right)-frac1n tag2$$
we have
$$0=frac1n-frac1n=
fracfrac1n-11+frac1n-1-frac1noverset(1)leq
logleft(1+frac1n-1right)-frac1noverset(1)leq
frac1n-1-frac1n$$
and as a result, from $(2)$
$$0leq sumlimits_ngeq2left(logleft(fracnn-1right)-frac1nright)leq
sumlimits_ngeq2left(frac1n-1-frac1nright)=\
limlimits_krightarrowinftysumlimits_n=2^kleft(frac1n-1-frac1nright)=
limlimits_krightarrowinftyleft(1-frac1kright)=1$$
and the original series converges.
$endgroup$
Using this inequality
$$xgeqln(1+x)geq fracx1+x, forall x>-1 tag1$$
and
$$logleft(fracnn-1right)-frac1n=
logleft(1+frac1n-1right)-frac1n tag2$$
we have
$$0=frac1n-frac1n=
fracfrac1n-11+frac1n-1-frac1noverset(1)leq
logleft(1+frac1n-1right)-frac1noverset(1)leq
frac1n-1-frac1n$$
and as a result, from $(2)$
$$0leq sumlimits_ngeq2left(logleft(fracnn-1right)-frac1nright)leq
sumlimits_ngeq2left(frac1n-1-frac1nright)=\
limlimits_krightarrowinftysumlimits_n=2^kleft(frac1n-1-frac1nright)=
limlimits_krightarrowinftyleft(1-frac1kright)=1$$
and the original series converges.
answered Mar 24 at 17:15
rtybasertybase
11.6k31534
11.6k31534
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160726%2fconvergence-of-the-series-sum-infty-n-2-left-ln-left-fracnn-1-righ%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
cf. Euler-Mascheroni constant
$endgroup$
– J. W. Tanner
Mar 24 at 16:19
2
$begingroup$
Have you heard about Euler-Masheroni constant? en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
$endgroup$
– Tito Eliatron
Mar 24 at 16:19