“The order of a torus link can be understood as a rational number”Alexander Multivariate Polynomial of a General Torus LinkCan the HOMFLY polynomial be obtained from the Kauffman Polynomial for torus knots?Crossing number and Torus linksTorus link and knotsWhat is a good reference for learning about induced norms?How do I find subsequent work done on a paper?Unlinking the toroidified Hopf link, overhand knot, in $mathbb R^4$?Are there special terms for (non-)bijective isometries?Are the borromean rings a torus link?Involution of the 3 and 4-holed torus and its effects on some knots and links
Pre-mixing cryogenic fuels and using only one fuel tank
What prevents the use of a multi-segment ILS for non-straight approaches?
Why electric field inside a cavity of a non-conducting sphere not zero?
Creature in Shazam mid-credits scene?
Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?
Is there a working SACD iso player for Ubuntu?
Is it improper etiquette to ask your opponent what his/her rating is before the game?
A social experiment. What is the worst that can happen?
What is the evidence for the "tyranny of the majority problem" in a direct democracy context?
When were female captains banned from Starfleet?
Why did the HMS Bounty go back to a time when whales are already rare?
How to indicate a cut out for a product window
In Qur'an 7:161, why is "say the word of humility" translated in various ways?
Is there a single word describing earning money through any means?
How to explain what's wrong with this application of the chain rule?
Aragorn's "guise" in the Orthanc Stone
Creepy dinosaur pc game identification
Are the IPv6 address space and IPv4 address space completely disjoint?
When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
Closed-form expression for certain product
What was this official D&D 3.5e Lovecraft-flavored rulebook?
The IT department bottlenecks progress. How should I handle this?
Store Credit Card Information in Password Manager?
“The order of a torus link can be understood as a rational number”
Alexander Multivariate Polynomial of a General Torus LinkCan the HOMFLY polynomial be obtained from the Kauffman Polynomial for torus knots?Crossing number and Torus linksTorus link and knotsWhat is a good reference for learning about induced norms?How do I find subsequent work done on a paper?Unlinking the toroidified Hopf link, overhand knot, in $mathbb R^4$?Are there special terms for (non-)bijective isometries?Are the borromean rings a torus link?Involution of the 3 and 4-holed torus and its effects on some knots and links
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
add a comment |
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
add a comment |
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
reference-request rational-numbers knot-theory
asked Mar 15 at 18:18
E.P.E.P.
1,5401125
1,5401125
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
answered Mar 16 at 20:22
Kyle MillerKyle Miller
9,690930
9,690930
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown