“The order of a torus link can be understood as a rational number”Alexander Multivariate Polynomial of a General Torus LinkCan the HOMFLY polynomial be obtained from the Kauffman Polynomial for torus knots?Crossing number and Torus linksTorus link and knotsWhat is a good reference for learning about induced norms?How do I find subsequent work done on a paper?Unlinking the toroidified Hopf link, overhand knot, in $mathbb R^4$?Are there special terms for (non-)bijective isometries?Are the borromean rings a torus link?Involution of the 3 and 4-holed torus and its effects on some knots and links

Multi tool use
Multi tool use

Pre-mixing cryogenic fuels and using only one fuel tank

What prevents the use of a multi-segment ILS for non-straight approaches?

Why electric field inside a cavity of a non-conducting sphere not zero?

Creature in Shazam mid-credits scene?

Where did Heinlein say "Once you get to Earth orbit, you're halfway to anywhere in the Solar System"?

Is there a working SACD iso player for Ubuntu?

Is it improper etiquette to ask your opponent what his/her rating is before the game?

A social experiment. What is the worst that can happen?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

When were female captains banned from Starfleet?

Why did the HMS Bounty go back to a time when whales are already rare?

How to indicate a cut out for a product window

In Qur'an 7:161, why is "say the word of humility" translated in various ways?

Is there a single word describing earning money through any means?

How to explain what's wrong with this application of the chain rule?

Aragorn's "guise" in the Orthanc Stone

Creepy dinosaur pc game identification

Are the IPv6 address space and IPv4 address space completely disjoint?

When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?

Closed-form expression for certain product

What was this official D&D 3.5e Lovecraft-flavored rulebook?

The IT department bottlenecks progress. How should I handle this?

Store Credit Card Information in Password Manager?



“The order of a torus link can be understood as a rational number”


Alexander Multivariate Polynomial of a General Torus LinkCan the HOMFLY polynomial be obtained from the Kauffman Polynomial for torus knots?Crossing number and Torus linksTorus link and knotsWhat is a good reference for learning about induced norms?How do I find subsequent work done on a paper?Unlinking the toroidified Hopf link, overhand knot, in $mathbb R^4$?Are there special terms for (non-)bijective isometries?Are the borromean rings a torus link?Involution of the 3 and 4-holed torus and its effects on some knots and links













1












$begingroup$


The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.



Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.



Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.



    Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.



    Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.



      Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.



      Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.










      share|cite|improve this question









      $endgroup$




      The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.



      Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.



      Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.







      reference-request rational-numbers knot-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 15 at 18:18









      E.P.E.P.

      1,5401125




      1,5401125




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.



          Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.



          For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.



          Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.



            Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.



            For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.



            Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.



              Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.



              For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.



              Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.



                Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.



                For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.



                Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html






                share|cite|improve this answer









                $endgroup$



                A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.



                Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.



                For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.



                Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 16 at 20:22









                Kyle MillerKyle Miller

                9,690930




                9,690930



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    pACPOQ53HJPHzgQUfIov od,yFbd,xHGg6LBPodvi3wz
                    sAoFMKxC3PboWOQXY0yqlD7h17KSBrc,E Pr0Z0yWq,E3

                    Popular posts from this blog

                    Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                    Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                    Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers