If $sum a_n$ converges and $b_n=sumlimits_k=n^inftya_n $, prove that $sum fraca_nb_n$ divergesWhat can be said about the convergence/divergence of $sum a_n/r_n$ when $sum a_n$ is convergent?Prove that the series $sum fraca_nr_n$ diverges.An important lemma involving diverging sequencesMembers divided by remainder series diverges$frac a_n+1a_n le frac b_n+1b_n$ If $sum_n=1^infty b_n$ converges then $sum_n=1^infty a_n$ converges as wellIf $ sum a_n$ diverges and $lambda_n to infty$, does the series $ sum lambda_na_n$ diverge?If $sum a_n b_n$ converges for all $(b_n)$ such that $b_n to 0$, then $sum |a_n|$ converges.If $sumlimits_n=1^infty a_n$ diverges, then $sumlimits_n=1^inftyexpleft(-sumlimits_k=1^n k a_kright)$ converges?If a $a_n$ diverges, so $a_n rightarrow + infty$, how to find sequence $b_n$ such that $sum |b_n|<infty$ but $sum |a_n||b_n|$ diverges?Show that if $sum b_n$ is a rearrangement of a series $sum a_n$ , and $a_n$ diverges to $infty$, then $sum b_n = infty$Convergence of $sumfraca_nb_n $ and $ sum (fraca_nb_n)^2 $ implies convergence of $ sumfraca_na_n+b_n$Convergence of infinite series for $sum a_n $ and $sum b_n$$a_n$ is convergent, $b_n$ bounded, prove $sum a_n b_n$ convergesProve that the series $sum fraca_nr_n$ diverges.
What was this official D&D 3.5e Lovecraft-flavored rulebook?
What should you do when eye contact makes your subordinate uncomfortable?
GraphicsGrid with a Label for each Column and Row
Should I outline or discovery write my stories?
Is there a working SACD iso player for Ubuntu?
A social experiment. What is the worst that can happen?
Where does the bonus feat in the cleric starting package come from?
The IT department bottlenecks progress. How should I handle this?
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
Should I stop contributing to retirement accounts?
Is it safe to use olive oil to clean the ear wax?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Why electric field inside a cavity of a non-conducting sphere not zero?
Lowest total scrabble score
I am looking for the correct translation of love for the phrase "in this sign love"
Is it possible to have a strip of cold climate in the middle of a planet?
Why do we read the Megillah by night and by day?
Is it better practice to read straight from sheet music rather than memorize it?
Strong empirical falsification of quantum mechanics based on vacuum energy density
Does a 'pending' US visa application constitute a denial?
250 Floor Tower
If infinitesimal transformations commute why dont the generators of the Lorentz group commute?
What are the purposes of autoencoders?
Why did the HMS Bounty go back to a time when whales are already rare?
If $sum a_n$ converges and $b_n=sumlimits_k=n^inftya_n $, prove that $sum fraca_nb_n$ diverges
What can be said about the convergence/divergence of $sum a_n/r_n$ when $sum a_n$ is convergent?Prove that the series $sum fraca_nr_n$ diverges.An important lemma involving diverging sequencesMembers divided by remainder series diverges$frac a_n+1a_n le frac b_n+1b_n$ If $sum_n=1^infty b_n$ converges then $sum_n=1^infty a_n$ converges as wellIf $ sum a_n$ diverges and $lambda_n to infty$, does the series $ sum lambda_na_n$ diverge?If $sum a_n b_n$ converges for all $(b_n)$ such that $b_n to 0$, then $sum |a_n|$ converges.If $sumlimits_n=1^infty a_n$ diverges, then $sumlimits_n=1^inftyexpleft(-sumlimits_k=1^n k a_kright)$ converges?If a $a_n$ diverges, so $a_n rightarrow + infty$, how to find sequence $b_n$ such that $sum |b_n|<infty$ but $sum |a_n||b_n|$ diverges?Show that if $sum b_n$ is a rearrangement of a series $sum a_n$ , and $a_n$ diverges to $infty$, then $sum b_n = infty$Convergence of $sumfraca_nb_n $ and $ sum (fraca_nb_n)^2 $ implies convergence of $ sumfraca_na_n+b_n$Convergence of infinite series for $sum a_n $ and $sum b_n$$a_n$ is convergent, $b_n$ bounded, prove $sum a_n b_n$ convergesProve that the series $sum fraca_nr_n$ diverges.
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_k=n^inftya_n$ , then prove that $displaystylesum fraca_nb_n$ diverges.
I could see that $b_n$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum fraca_nb_n=sumfracb_n-b_n+1b_n$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
add a comment |
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_k=n^inftya_n$ , then prove that $displaystylesum fraca_nb_n$ diverges.
I could see that $b_n$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum fraca_nb_n=sumfracb_n-b_n+1b_n$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_k=n^inftya_n$ , then prove that $displaystylesum fraca_nb_n$ diverges.
I could see that $b_n$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum fraca_nb_n=sumfracb_n-b_n+1b_n$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_k=n^inftya_n$ , then prove that $displaystylesum fraca_nb_n$ diverges.
I could see that $b_n$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum fraca_nb_n=sumfracb_n-b_n+1b_n$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
real-analysis sequences-and-series analysis divergent-series
edited Dec 24 '15 at 11:00
Yiorgos S. Smyrlis
63.6k1385165
63.6k1385165
asked Aug 11 '14 at 7:28
BhauryalBhauryal
3,2391237
3,2391237
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$fracb_k+1b_k=1-fraca_kb_k$$
Hence
$$fracb_N+1b_1=prod_k=1^N(1-fraca_kb_k)$$ and
$$log b_N+1-log b_1=sum_k=1^N log(1-fraca_kb_k)$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-fraca_kb_k)$ is convergent, a contradiction as $log (b_N+1) to -infty$.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac1nsum_m>na_m,tag1$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac1N(L-a_n)+fracN-1(N+1)N(L-a_n)+ldots = L,tag2$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac1nright)a_ngeqfrac1nb_ntag3$$
holds, hence:
$$sum_ngeq Mfraca_nb_ngeqsum_ngeq Mfrac1n+1,tag4$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
First note that $b_n_ninmathbb N$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
fraca_mb_m+cdots+fraca_nb_nge
fraca_mb_m+cdots+fraca_nb_m=frac1b_m(a_m+cdots+a_n)=fracb_n-b_mb_m=1-fracb_nb_m.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
fracb_m_i+1b_m_i<1/2.
$$
Then we have that
$$
sum_n=1^m_kfraca_nb_ngesum_i=1^k-1sum_n=m_i+1^m_i+1fraca_nb_nge
sum_i=1^k-1left(1-fracb_m_ib_m_i+1right)gefrack-12,
$$
and hence $displaystylesum_n=1^inftyfraca_nb_n=infty$.
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$beginalignedfraca_nb_n+cdotsfraca_mb_m&ge fraca_nb_n+cdots +fraca_mb_n\
&=fracb_n-b_m+1b_n = 1-fracb_m+1b_n.
endaligned$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For a sum $sum_k=0^inftyc_k$ to converge its tail must converge to 0.
$$
lim_n to infty sum_k=n^inftyc_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_k=n^inftyc_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_k=n^inftyfraca_kb_k geq frac1b_nsum_k=n^inftya_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $undersetnto+inftylim fraca_nb_n$ is not $ 0 $ or does not exist, $sum fraca_nb_n$ is directly divergent.
Otherwise we have $undersetnto+inftylim fraca_nb_n = 0 $ so $b_n+1 sim b_n $ . It implies $sum fraca_nb_n = sum fracb_n-b_n+1b_n$ and $sum fracb_n-b_n+1b_n+1$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_n=1^N fracb_n-b_n+1b_n+1 ge sum_n=1^N int_b_n+1^b_n fracdxx = int_b_N+1^b_1 fracdxx = ln left(fracb_1b_N+1right) undersetNto+inftylongrightarrow+infty $$
$endgroup$
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$fracb_k+1b_k=1-fraca_kb_k$$
Hence
$$fracb_N+1b_1=prod_k=1^N(1-fraca_kb_k)$$ and
$$log b_N+1-log b_1=sum_k=1^N log(1-fraca_kb_k)$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-fraca_kb_k)$ is convergent, a contradiction as $log (b_N+1) to -infty$.
$endgroup$
add a comment |
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$fracb_k+1b_k=1-fraca_kb_k$$
Hence
$$fracb_N+1b_1=prod_k=1^N(1-fraca_kb_k)$$ and
$$log b_N+1-log b_1=sum_k=1^N log(1-fraca_kb_k)$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-fraca_kb_k)$ is convergent, a contradiction as $log (b_N+1) to -infty$.
$endgroup$
add a comment |
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$fracb_k+1b_k=1-fraca_kb_k$$
Hence
$$fracb_N+1b_1=prod_k=1^N(1-fraca_kb_k)$$ and
$$log b_N+1-log b_1=sum_k=1^N log(1-fraca_kb_k)$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-fraca_kb_k)$ is convergent, a contradiction as $log (b_N+1) to -infty$.
$endgroup$
Sorry, my previous answer was not correct. A new tentative:
$$fracb_k+1b_k=1-fraca_kb_k$$
Hence
$$fracb_N+1b_1=prod_k=1^N(1-fraca_kb_k)$$ and
$$log b_N+1-log b_1=sum_k=1^N log(1-fraca_kb_k)$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-fraca_kb_k)$ is convergent, a contradiction as $log (b_N+1) to -infty$.
edited Aug 11 '14 at 8:42
answered Aug 11 '14 at 7:44
KelennerKelenner
17.5k1830
17.5k1830
add a comment |
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac1nsum_m>na_m,tag1$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac1N(L-a_n)+fracN-1(N+1)N(L-a_n)+ldots = L,tag2$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac1nright)a_ngeqfrac1nb_ntag3$$
holds, hence:
$$sum_ngeq Mfraca_nb_ngeqsum_ngeq Mfrac1n+1,tag4$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac1nsum_m>na_m,tag1$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac1N(L-a_n)+fracN-1(N+1)N(L-a_n)+ldots = L,tag2$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac1nright)a_ngeqfrac1nb_ntag3$$
holds, hence:
$$sum_ngeq Mfraca_nb_ngeqsum_ngeq Mfrac1n+1,tag4$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac1nsum_m>na_m,tag1$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac1N(L-a_n)+fracN-1(N+1)N(L-a_n)+ldots = L,tag2$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac1nright)a_ngeqfrac1nb_ntag3$$
holds, hence:
$$sum_ngeq Mfraca_nb_ngeqsum_ngeq Mfrac1n+1,tag4$$
but the RHS of $(4)$ diverges.
$endgroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac1nsum_m>na_m,tag1$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac1N(L-a_n)+fracN-1(N+1)N(L-a_n)+ldots = L,tag2$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac1nright)a_ngeqfrac1nb_ntag3$$
holds, hence:
$$sum_ngeq Mfraca_nb_ngeqsum_ngeq Mfrac1n+1,tag4$$
but the RHS of $(4)$ diverges.
answered Aug 11 '14 at 8:03
Jack D'AurizioJack D'Aurizio
291k33284669
291k33284669
add a comment |
add a comment |
$begingroup$
First note that $b_n_ninmathbb N$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
fraca_mb_m+cdots+fraca_nb_nge
fraca_mb_m+cdots+fraca_nb_m=frac1b_m(a_m+cdots+a_n)=fracb_n-b_mb_m=1-fracb_nb_m.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
fracb_m_i+1b_m_i<1/2.
$$
Then we have that
$$
sum_n=1^m_kfraca_nb_ngesum_i=1^k-1sum_n=m_i+1^m_i+1fraca_nb_nge
sum_i=1^k-1left(1-fracb_m_ib_m_i+1right)gefrack-12,
$$
and hence $displaystylesum_n=1^inftyfraca_nb_n=infty$.
$endgroup$
add a comment |
$begingroup$
First note that $b_n_ninmathbb N$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
fraca_mb_m+cdots+fraca_nb_nge
fraca_mb_m+cdots+fraca_nb_m=frac1b_m(a_m+cdots+a_n)=fracb_n-b_mb_m=1-fracb_nb_m.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
fracb_m_i+1b_m_i<1/2.
$$
Then we have that
$$
sum_n=1^m_kfraca_nb_ngesum_i=1^k-1sum_n=m_i+1^m_i+1fraca_nb_nge
sum_i=1^k-1left(1-fracb_m_ib_m_i+1right)gefrack-12,
$$
and hence $displaystylesum_n=1^inftyfraca_nb_n=infty$.
$endgroup$
add a comment |
$begingroup$
First note that $b_n_ninmathbb N$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
fraca_mb_m+cdots+fraca_nb_nge
fraca_mb_m+cdots+fraca_nb_m=frac1b_m(a_m+cdots+a_n)=fracb_n-b_mb_m=1-fracb_nb_m.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
fracb_m_i+1b_m_i<1/2.
$$
Then we have that
$$
sum_n=1^m_kfraca_nb_ngesum_i=1^k-1sum_n=m_i+1^m_i+1fraca_nb_nge
sum_i=1^k-1left(1-fracb_m_ib_m_i+1right)gefrack-12,
$$
and hence $displaystylesum_n=1^inftyfraca_nb_n=infty$.
$endgroup$
First note that $b_n_ninmathbb N$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
fraca_mb_m+cdots+fraca_nb_nge
fraca_mb_m+cdots+fraca_nb_m=frac1b_m(a_m+cdots+a_n)=fracb_n-b_mb_m=1-fracb_nb_m.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
fracb_m_i+1b_m_i<1/2.
$$
Then we have that
$$
sum_n=1^m_kfraca_nb_ngesum_i=1^k-1sum_n=m_i+1^m_i+1fraca_nb_nge
sum_i=1^k-1left(1-fracb_m_ib_m_i+1right)gefrack-12,
$$
and hence $displaystylesum_n=1^inftyfraca_nb_n=infty$.
edited Dec 24 '15 at 10:58
answered Aug 11 '14 at 7:44
Yiorgos S. SmyrlisYiorgos S. Smyrlis
63.6k1385165
63.6k1385165
add a comment |
add a comment |
$begingroup$
For $m>n$ one has
$$beginalignedfraca_nb_n+cdotsfraca_mb_m&ge fraca_nb_n+cdots +fraca_mb_n\
&=fracb_n-b_m+1b_n = 1-fracb_m+1b_n.
endaligned$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$beginalignedfraca_nb_n+cdotsfraca_mb_m&ge fraca_nb_n+cdots +fraca_mb_n\
&=fracb_n-b_m+1b_n = 1-fracb_m+1b_n.
endaligned$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$beginalignedfraca_nb_n+cdotsfraca_mb_m&ge fraca_nb_n+cdots +fraca_mb_n\
&=fracb_n-b_m+1b_n = 1-fracb_m+1b_n.
endaligned$$
Can you continue from here?
$endgroup$
For $m>n$ one has
$$beginalignedfraca_nb_n+cdotsfraca_mb_m&ge fraca_nb_n+cdots +fraca_mb_n\
&=fracb_n-b_m+1b_n = 1-fracb_m+1b_n.
endaligned$$
Can you continue from here?
answered Aug 11 '14 at 7:44
Quang HoangQuang Hoang
13.2k1233
13.2k1233
add a comment |
add a comment |
$begingroup$
For a sum $sum_k=0^inftyc_k$ to converge its tail must converge to 0.
$$
lim_n to infty sum_k=n^inftyc_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_k=n^inftyc_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_k=n^inftyfraca_kb_k geq frac1b_nsum_k=n^inftya_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
For a sum $sum_k=0^inftyc_k$ to converge its tail must converge to 0.
$$
lim_n to infty sum_k=n^inftyc_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_k=n^inftyc_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_k=n^inftyfraca_kb_k geq frac1b_nsum_k=n^inftya_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
For a sum $sum_k=0^inftyc_k$ to converge its tail must converge to 0.
$$
lim_n to infty sum_k=n^inftyc_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_k=n^inftyc_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_k=n^inftyfraca_kb_k geq frac1b_nsum_k=n^inftya_k = 1 = epsilon
$$
$endgroup$
For a sum $sum_k=0^inftyc_k$ to converge its tail must converge to 0.
$$
lim_n to infty sum_k=n^inftyc_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_k=n^inftyc_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_k=n^inftyfraca_kb_k geq frac1b_nsum_k=n^inftya_k = 1 = epsilon
$$
answered Aug 11 '14 at 8:50
vladimirmvladimirm
630514
630514
add a comment |
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $undersetnto+inftylim fraca_nb_n$ is not $ 0 $ or does not exist, $sum fraca_nb_n$ is directly divergent.
Otherwise we have $undersetnto+inftylim fraca_nb_n = 0 $ so $b_n+1 sim b_n $ . It implies $sum fraca_nb_n = sum fracb_n-b_n+1b_n$ and $sum fracb_n-b_n+1b_n+1$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_n=1^N fracb_n-b_n+1b_n+1 ge sum_n=1^N int_b_n+1^b_n fracdxx = int_b_N+1^b_1 fracdxx = ln left(fracb_1b_N+1right) undersetNto+inftylongrightarrow+infty $$
$endgroup$
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $undersetnto+inftylim fraca_nb_n$ is not $ 0 $ or does not exist, $sum fraca_nb_n$ is directly divergent.
Otherwise we have $undersetnto+inftylim fraca_nb_n = 0 $ so $b_n+1 sim b_n $ . It implies $sum fraca_nb_n = sum fracb_n-b_n+1b_n$ and $sum fracb_n-b_n+1b_n+1$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_n=1^N fracb_n-b_n+1b_n+1 ge sum_n=1^N int_b_n+1^b_n fracdxx = int_b_N+1^b_1 fracdxx = ln left(fracb_1b_N+1right) undersetNto+inftylongrightarrow+infty $$
$endgroup$
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $undersetnto+inftylim fraca_nb_n$ is not $ 0 $ or does not exist, $sum fraca_nb_n$ is directly divergent.
Otherwise we have $undersetnto+inftylim fraca_nb_n = 0 $ so $b_n+1 sim b_n $ . It implies $sum fraca_nb_n = sum fracb_n-b_n+1b_n$ and $sum fracb_n-b_n+1b_n+1$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_n=1^N fracb_n-b_n+1b_n+1 ge sum_n=1^N int_b_n+1^b_n fracdxx = int_b_N+1^b_1 fracdxx = ln left(fracb_1b_N+1right) undersetNto+inftylongrightarrow+infty $$
$endgroup$
First answer was wrong. Here is my new try :
If $undersetnto+inftylim fraca_nb_n$ is not $ 0 $ or does not exist, $sum fraca_nb_n$ is directly divergent.
Otherwise we have $undersetnto+inftylim fraca_nb_n = 0 $ so $b_n+1 sim b_n $ . It implies $sum fraca_nb_n = sum fracb_n-b_n+1b_n$ and $sum fracb_n-b_n+1b_n+1$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_n=1^N fracb_n-b_n+1b_n+1 ge sum_n=1^N int_b_n+1^b_n fracdxx = int_b_N+1^b_1 fracdxx = ln left(fracb_1b_N+1right) undersetNto+inftylongrightarrow+infty $$
edited Aug 13 '14 at 12:17
answered Aug 12 '14 at 11:42
yultanyultan
1,25289
1,25289
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
please explain $displaystyle fracb_n-b_n+1b_n ge int_b_n+1^b_n fracdxx$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot undersetxin [a,b]min f(x) le int_a^b f(t) dt le (b-a)cdot undersetxin [a,b]max f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Yes, but $x leq b_n$ and thus $frac1x geq frac1b_n$, but you need $frac1x leq frac1b_n$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
$begingroup$
Sorry I made a mistake. You are right it should be with $b_n+1$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33