Shortest distance to a spheroidHow do I convert a vector field in Cartesian coordinates to spherical coordinates?Converting from spherical coordinates to cartesian around arbitrary vector $N$Bipolar toroidal coordinates - position vector, velocity and accelerationIs it possible to calculate a surface integral of a vector field when the vector field is described in non-cartesian coordinates?Laplace Equation on Prolate Spheroidal CoordinatesChoosing 'hyperbolic' coordinates adapted to the quadratic quantity $x^2+y^2-z^2-t^2$Jacobian matrix vs. Transformation matrixScale factors for the Oblate Spheroidal Coordiante systemRelation between transformation matrices and conversion formulas between coordinate systems?Rotationally invariant Green's functions for the three-variable Laplace equation in all known coordinate systems
Where does the bonus feat in the cleric starting package come from?
Argument list too long when zipping large list of certain files in a folder
Non-trope happy ending?
When were female captains banned from Starfleet?
A social experiment. What is the worst that can happen?
Does a 'pending' US visa application constitute a denial?
What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?
Why do compilers behave differently when static_cast(ing) a function to void*?
Approximating irrational number to rational number
Creature in Shazam mid-credits scene?
Open a doc from terminal, but not by its name
What does chmod -u do?
Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?
How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?
How to explain what's wrong with this application of the chain rule?
In Qur'an 7:161, why is "say the word of humility" translated in various ways?
Not using 's' for he/she/it
Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed
How can "mimic phobia" be cured or prevented?
Create all possible words using a set or letters
Melting point of aspirin, contradicting sources
Is the U.S. Code copyrighted by the Government?
What should you do if you miss a job interview (deliberately)?
Intuition of generalized eigenvector.
Shortest distance to a spheroid
How do I convert a vector field in Cartesian coordinates to spherical coordinates?Converting from spherical coordinates to cartesian around arbitrary vector $N$Bipolar toroidal coordinates - position vector, velocity and accelerationIs it possible to calculate a surface integral of a vector field when the vector field is described in non-cartesian coordinates?Laplace Equation on Prolate Spheroidal CoordinatesChoosing 'hyperbolic' coordinates adapted to the quadratic quantity $x^2+y^2-z^2-t^2$Jacobian matrix vs. Transformation matrixScale factors for the Oblate Spheroidal Coordiante systemRelation between transformation matrices and conversion formulas between coordinate systems?Rotationally invariant Green's functions for the three-variable Laplace equation in all known coordinate systems
$begingroup$
I have a point $P'$ given by known Cartesian coordinates $(x',y',z')$ and an oblate spheroidal surface parameterized by
beginalign
x &= a coshmu cosnu cosphi \
y &= a coshmu cosnu sinphi \
z &= a sinhmu sinnu
endalign
where $a,mu$ are known constants. For an oblate spheroid, $mu$ is similar to a radial coordinate, $nu$ is similar to a latitude, and $phi$ is the same azimuthal angle from spherical coordinates. So for an oblate spheroidal surface, $mu$ is fixed.
When you draw a line from the point $P'$ perpendicular to the oblate spheroid surface ($P'$ is outside the surface), it will intersect the surface at some point $P$ at coordinates $(x,y,z)$. I need to find the location of this point (it will intersect the surface at 2 points, but I want the intersection closest to $P'$ and normal to the surface).
To do this, I write the equation of that line containing both $P'$ and $P$ as:
$$
mathbfx' = mathbfx + t hate_mu
$$
where $mathbfx$ is the point I want to find, $t$ is unknown, and $hate_mu$ is the outward normal vector to the oblate spheroid surface at the point $mathbfx$:
$$
hate_mu = 1 over sqrtsinh^2mu + sin^2nu
beginpmatrix
sinhmu cosnu cosphi \
sinhmu cosnu sinphi \
coshmu sinnu
endpmatrix
$$
So we have 3 equations and 2 unknowns: $t$ and $nu$. As I mentioned before, $a$ and $mu$ are known constants, $mathbfx'$ is given, and the angle $phi$ can be determined from symmetry, since both points $P$ and $P'$ will share the same azimuth angle.
Since $mu$ and $phi$ are known, the goal is to solve for $nu$ since that would immediately yield the coordinates $(x,y,z)$. I don't see an easy way to solve this equation analytically - I could use numerical methods but it seems to me that there should be an analytical solution to this. Does anyone see how?
geometry coordinate-systems surfaces
$endgroup$
add a comment |
$begingroup$
I have a point $P'$ given by known Cartesian coordinates $(x',y',z')$ and an oblate spheroidal surface parameterized by
beginalign
x &= a coshmu cosnu cosphi \
y &= a coshmu cosnu sinphi \
z &= a sinhmu sinnu
endalign
where $a,mu$ are known constants. For an oblate spheroid, $mu$ is similar to a radial coordinate, $nu$ is similar to a latitude, and $phi$ is the same azimuthal angle from spherical coordinates. So for an oblate spheroidal surface, $mu$ is fixed.
When you draw a line from the point $P'$ perpendicular to the oblate spheroid surface ($P'$ is outside the surface), it will intersect the surface at some point $P$ at coordinates $(x,y,z)$. I need to find the location of this point (it will intersect the surface at 2 points, but I want the intersection closest to $P'$ and normal to the surface).
To do this, I write the equation of that line containing both $P'$ and $P$ as:
$$
mathbfx' = mathbfx + t hate_mu
$$
where $mathbfx$ is the point I want to find, $t$ is unknown, and $hate_mu$ is the outward normal vector to the oblate spheroid surface at the point $mathbfx$:
$$
hate_mu = 1 over sqrtsinh^2mu + sin^2nu
beginpmatrix
sinhmu cosnu cosphi \
sinhmu cosnu sinphi \
coshmu sinnu
endpmatrix
$$
So we have 3 equations and 2 unknowns: $t$ and $nu$. As I mentioned before, $a$ and $mu$ are known constants, $mathbfx'$ is given, and the angle $phi$ can be determined from symmetry, since both points $P$ and $P'$ will share the same azimuth angle.
Since $mu$ and $phi$ are known, the goal is to solve for $nu$ since that would immediately yield the coordinates $(x,y,z)$. I don't see an easy way to solve this equation analytically - I could use numerical methods but it seems to me that there should be an analytical solution to this. Does anyone see how?
geometry coordinate-systems surfaces
$endgroup$
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35
add a comment |
$begingroup$
I have a point $P'$ given by known Cartesian coordinates $(x',y',z')$ and an oblate spheroidal surface parameterized by
beginalign
x &= a coshmu cosnu cosphi \
y &= a coshmu cosnu sinphi \
z &= a sinhmu sinnu
endalign
where $a,mu$ are known constants. For an oblate spheroid, $mu$ is similar to a radial coordinate, $nu$ is similar to a latitude, and $phi$ is the same azimuthal angle from spherical coordinates. So for an oblate spheroidal surface, $mu$ is fixed.
When you draw a line from the point $P'$ perpendicular to the oblate spheroid surface ($P'$ is outside the surface), it will intersect the surface at some point $P$ at coordinates $(x,y,z)$. I need to find the location of this point (it will intersect the surface at 2 points, but I want the intersection closest to $P'$ and normal to the surface).
To do this, I write the equation of that line containing both $P'$ and $P$ as:
$$
mathbfx' = mathbfx + t hate_mu
$$
where $mathbfx$ is the point I want to find, $t$ is unknown, and $hate_mu$ is the outward normal vector to the oblate spheroid surface at the point $mathbfx$:
$$
hate_mu = 1 over sqrtsinh^2mu + sin^2nu
beginpmatrix
sinhmu cosnu cosphi \
sinhmu cosnu sinphi \
coshmu sinnu
endpmatrix
$$
So we have 3 equations and 2 unknowns: $t$ and $nu$. As I mentioned before, $a$ and $mu$ are known constants, $mathbfx'$ is given, and the angle $phi$ can be determined from symmetry, since both points $P$ and $P'$ will share the same azimuth angle.
Since $mu$ and $phi$ are known, the goal is to solve for $nu$ since that would immediately yield the coordinates $(x,y,z)$. I don't see an easy way to solve this equation analytically - I could use numerical methods but it seems to me that there should be an analytical solution to this. Does anyone see how?
geometry coordinate-systems surfaces
$endgroup$
I have a point $P'$ given by known Cartesian coordinates $(x',y',z')$ and an oblate spheroidal surface parameterized by
beginalign
x &= a coshmu cosnu cosphi \
y &= a coshmu cosnu sinphi \
z &= a sinhmu sinnu
endalign
where $a,mu$ are known constants. For an oblate spheroid, $mu$ is similar to a radial coordinate, $nu$ is similar to a latitude, and $phi$ is the same azimuthal angle from spherical coordinates. So for an oblate spheroidal surface, $mu$ is fixed.
When you draw a line from the point $P'$ perpendicular to the oblate spheroid surface ($P'$ is outside the surface), it will intersect the surface at some point $P$ at coordinates $(x,y,z)$. I need to find the location of this point (it will intersect the surface at 2 points, but I want the intersection closest to $P'$ and normal to the surface).
To do this, I write the equation of that line containing both $P'$ and $P$ as:
$$
mathbfx' = mathbfx + t hate_mu
$$
where $mathbfx$ is the point I want to find, $t$ is unknown, and $hate_mu$ is the outward normal vector to the oblate spheroid surface at the point $mathbfx$:
$$
hate_mu = 1 over sqrtsinh^2mu + sin^2nu
beginpmatrix
sinhmu cosnu cosphi \
sinhmu cosnu sinphi \
coshmu sinnu
endpmatrix
$$
So we have 3 equations and 2 unknowns: $t$ and $nu$. As I mentioned before, $a$ and $mu$ are known constants, $mathbfx'$ is given, and the angle $phi$ can be determined from symmetry, since both points $P$ and $P'$ will share the same azimuth angle.
Since $mu$ and $phi$ are known, the goal is to solve for $nu$ since that would immediately yield the coordinates $(x,y,z)$. I don't see an easy way to solve this equation analytically - I could use numerical methods but it seems to me that there should be an analytical solution to this. Does anyone see how?
geometry coordinate-systems surfaces
geometry coordinate-systems surfaces
edited Mar 15 at 17:51
vibe
asked Mar 15 at 17:12
vibevibe
1748
1748
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35
add a comment |
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149559%2fshortest-distance-to-a-spheroid%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149559%2fshortest-distance-to-a-spheroid%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
After a literature search, it seems that a numerical solution is required: link.springer.com/article/10.1007/s00190-011-0514-7
$endgroup$
– vibe
Mar 15 at 18:35