Inequalities with multiple conditions helphard inequalitiesA cascade of inequalitiesSolving a series of inequalitiesStrict inequalities in an LP problemWhat algorithm to use to solve these equations?Number of solutions to $x_1 + x_2 + x_3 + x_4 < 100$ with some constraintsMinimization of InequalitiesGeneralization of $fleft(fracx_1 + x_22right) < f(x_1) + f(x_2) over 2$ for odd number of variables.Can inequalities over $n>2$ variables ever imply an inequality over $2$ variables?How to prove the following inequality? (related to no-arbitrage conditions)

Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed

What does routing an IP address mean?

Why is it that I can sometimes guess the next note?

Closed-form expression for certain product

How could a planet have erratic days?

What does chmod -u do?

What are the purposes of autoencoders?

What is the evidence for the "tyranny of the majority problem" in a direct democracy context?

Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?

How to bake one texture for one mesh with multiple textures blender 2.8

What is Cash Advance APR?

On a tidally locked planet, would time be quantized?

Should I stop contributing to retirement accounts?

Redundant comparison & "if" before assignment

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

Is it safe to use olive oil to clean the ear wax?

Are paving bricks differently sized for sand bedding vs mortar bedding?

Why should universal income be universal?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Creepy dinosaur pc game identification

The screen of my macbook suddenly broken down how can I do to recover

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

250 Floor Tower

Why can Carol Danvers change her suit colours in the first place?



Inequalities with multiple conditions help


hard inequalitiesA cascade of inequalitiesSolving a series of inequalitiesStrict inequalities in an LP problemWhat algorithm to use to solve these equations?Number of solutions to $x_1 + x_2 + x_3 + x_4 < 100$ with some constraintsMinimization of InequalitiesGeneralization of $fleft(fracx_1 + x_22right) < f(x_1) + f(x_2) over 2$ for odd number of variables.Can inequalities over $n>2$ variables ever imply an inequality over $2$ variables?How to prove the following inequality? (related to no-arbitrage conditions)













0












$begingroup$


If I have 3 variables, $x_1$, $x_2$, $x_3$ which can all take values between plus/minus infinity, what values of $x_1$ satisfy all conditions:



$x_2 > x_1 >x_3$



$x_2>0$



$x_3<0$



Any tips would be appreciated!










share|cite|improve this question









$endgroup$











  • $begingroup$
    Which number you tried to take?
    $endgroup$
    – Michael Rozenberg
    Mar 15 at 17:27










  • $begingroup$
    Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
    $endgroup$
    – Dr. Mathva
    Mar 15 at 18:41










  • $begingroup$
    @Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
    $endgroup$
    – darren86
    Mar 16 at 15:04











  • $begingroup$
    Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
    $endgroup$
    – Andreas
    Mar 16 at 18:04















0












$begingroup$


If I have 3 variables, $x_1$, $x_2$, $x_3$ which can all take values between plus/minus infinity, what values of $x_1$ satisfy all conditions:



$x_2 > x_1 >x_3$



$x_2>0$



$x_3<0$



Any tips would be appreciated!










share|cite|improve this question









$endgroup$











  • $begingroup$
    Which number you tried to take?
    $endgroup$
    – Michael Rozenberg
    Mar 15 at 17:27










  • $begingroup$
    Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
    $endgroup$
    – Dr. Mathva
    Mar 15 at 18:41










  • $begingroup$
    @Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
    $endgroup$
    – darren86
    Mar 16 at 15:04











  • $begingroup$
    Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
    $endgroup$
    – Andreas
    Mar 16 at 18:04













0












0








0





$begingroup$


If I have 3 variables, $x_1$, $x_2$, $x_3$ which can all take values between plus/minus infinity, what values of $x_1$ satisfy all conditions:



$x_2 > x_1 >x_3$



$x_2>0$



$x_3<0$



Any tips would be appreciated!










share|cite|improve this question









$endgroup$




If I have 3 variables, $x_1$, $x_2$, $x_3$ which can all take values between plus/minus infinity, what values of $x_1$ satisfy all conditions:



$x_2 > x_1 >x_3$



$x_2>0$



$x_3<0$



Any tips would be appreciated!







algebra-precalculus inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 15 at 17:11









darren86darren86

567




567











  • $begingroup$
    Which number you tried to take?
    $endgroup$
    – Michael Rozenberg
    Mar 15 at 17:27










  • $begingroup$
    Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
    $endgroup$
    – Dr. Mathva
    Mar 15 at 18:41










  • $begingroup$
    @Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
    $endgroup$
    – darren86
    Mar 16 at 15:04











  • $begingroup$
    Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
    $endgroup$
    – Andreas
    Mar 16 at 18:04
















  • $begingroup$
    Which number you tried to take?
    $endgroup$
    – Michael Rozenberg
    Mar 15 at 17:27










  • $begingroup$
    Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
    $endgroup$
    – Dr. Mathva
    Mar 15 at 18:41










  • $begingroup$
    @Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
    $endgroup$
    – darren86
    Mar 16 at 15:04











  • $begingroup$
    Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
    $endgroup$
    – Andreas
    Mar 16 at 18:04















$begingroup$
Which number you tried to take?
$endgroup$
– Michael Rozenberg
Mar 15 at 17:27




$begingroup$
Which number you tried to take?
$endgroup$
– Michael Rozenberg
Mar 15 at 17:27












$begingroup$
Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
$endgroup$
– Dr. Mathva
Mar 15 at 18:41




$begingroup$
Does $x_1$ have to satisfy all inequalities, whatever the values of $x_2,x_3$ are?
$endgroup$
– Dr. Mathva
Mar 15 at 18:41












$begingroup$
@Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
$endgroup$
– darren86
Mar 16 at 15:04





$begingroup$
@Dr.Mathva To clarify in words.....I'm looking for all values of $x_1$ such that it must be less than $x_2$ and greater than $x_3$, where $x_2 >0$ and $x_3 < 0$
$endgroup$
– darren86
Mar 16 at 15:04













$begingroup$
Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
$endgroup$
– Andreas
Mar 16 at 18:04




$begingroup$
Well, since $x_2 >0$ and $x_3 <0$, the interval $[x_3, x_2]$ is nonempty since it includes the value $0$. So the answer is simply the first condition, i.e. the values of $x_1$ which satisfy all three conditions are given by all $x_1$ with $x_2 > x_1 >x_3$.
$endgroup$
– Andreas
Mar 16 at 18:04










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149557%2finequalities-with-multiple-conditions-help%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149557%2finequalities-with-multiple-conditions-help%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye