Proving $int_0^infty logleft (1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$Computing $int_0^pilnleft(1-2acos x+a^2right) , dx$Find the integral of log(1 - a/x^2 + 1/x^4) from 0 to infinityEvaluating $int_0^largefracpi4 logleft( cos xright) , mathrmdx $$iint_D cos left( fracx-yx+y right),dA$Evaluate: $int_0^pi ln left( sin theta right) dtheta$Computation of $int_0^pi fracsin^n theta(1+x^2-2x cdot cos theta)^fracn2 , dtheta$A Challenging Integral $int_0^fracpi2log left( x^2+log^2(cos x)right)dx$Log Sine: $int_0^pi theta^2 ln^2big(2sinfractheta2big)d theta.$Prove $cos(2theta) + cosleft(2 left(fracpi3 + thetaright)right) +cosleft(2 left(frac2pi3 + thetaright)right) = 0$Closed form of $int_0^pi/2 fracarctan^2 (sin^2 theta)sin^2 theta,dtheta$Interesting integral: $I=int_0^1 int_0^1 logleft( cos(pi x)^2 + cos(pi y)^2 right)dxdy$Substitutions for the trigonometric integral $int cos theta cos^5left(sin thetaright) dtheta$

Meaning of "SEVERA INDEOVI VAS" from 3rd Century slab

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

It's a yearly task, alright

Does this property of comaximal ideals always holds?

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

Good allowance savings plan?

My adviser wants to be the first author

Make a transparent 448*448 image

How could a scammer know the apps on my phone / iTunes account?

How is the Swiss post e-voting system supposed to work, and how was it wrong?

Distribution of Maximum Likelihood Estimator

What has been your most complicated TikZ drawing?

Is it true that real estate prices mainly go up?

Humanity loses the vast majority of its technology, information, and population in the year 2122. How long does it take to rebuild itself?

Rules about breaking the rules. How do I do it well?

Is it possible that AIC = BIC?

Is a lawful good "antagonist" effective?

Calculus II Professor will not accept my correct integral evaluation that uses a different method, should I bring this up further?

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

PlotLabels with equations not expressions

Converting Functions to Arrow functions

Why doesn't using two cd commands in bash script execute the second command?

What is IP squat space

How do I interpret this "sky cover" chart?



Proving $int_0^infty logleft (1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$


Computing $int_0^pilnleft(1-2acos x+a^2right) , dx$Find the integral of log(1 - a/x^2 + 1/x^4) from 0 to infinityEvaluating $int_0^largefracpi4 logleft( cos xright) , mathrmdx $$iint_D cos left( fracx-yx+y right),dA$Evaluate: $int_0^pi ln left( sin theta right) dtheta$Computation of $int_0^pi fracsin^n theta(1+x^2-2x cdot cos theta)^fracn2 , dtheta$A Challenging Integral $int_0^fracpi2log left( x^2+log^2(cos x)right)dx$Log Sine: $int_0^pi theta^2 ln^2big(2sinfractheta2big)d theta.$Prove $cos(2theta) + cosleft(2 left(fracpi3 + thetaright)right) +cosleft(2 left(frac2pi3 + thetaright)right) = 0$Closed form of $int_0^pi/2 fracarctan^2 (sin^2 theta)sin^2 theta,dtheta$Interesting integral: $I=int_0^1 int_0^1 logleft( cos(pi x)^2 + cos(pi y)^2 right)dxdy$Substitutions for the trigonometric integral $int cos theta cos^5left(sin thetaright) dtheta$













8












$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11















8












$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11













8












8








8


2



$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$





Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.







calculus integration trigonometry definite-integrals logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 12:18







Zero

















asked Mar 11 at 10:20









ZeroZero

47210




47210











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11
















  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11















$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30




$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30




1




1




$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11




$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11










3 Answers
3






active

oldest

votes


















7












$begingroup$

We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
$$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
$$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
$$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Nice idea! But how to deal with $I'(0)$?
    $endgroup$
    – Zero
    Mar 11 at 12:50










  • $begingroup$
    Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
    $endgroup$
    – Zacky
    Mar 11 at 13:02











  • $begingroup$
    Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
    $endgroup$
    – Zero
    Mar 12 at 0:27










  • $begingroup$
    Wait, why doesn't it vanish after plugging $theta=0$?
    $endgroup$
    – Zacky
    2 days ago










  • $begingroup$
    My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
    $endgroup$
    – Zero
    13 hours ago



















5












$begingroup$

For $theta in [0;pi]$,
beginalign
J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
endalign

Perform the change of variable $y=dfrac1x$,



beginalign
J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
endalign



For $ageq -1$, define the function $F$ by,
beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
&=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
&=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
endalign

Perform the change of variable $y=dfrac1x$,
beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
&=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
endalign

Therefore,
beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
&=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
&=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
endalign

Perform the change of variable $y=x-dfrac1x$,
beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
&=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
&=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
&=boxedpisqrt2(1+a)
endalign



Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
endalign

Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



Therefore,
beginalignboxedJ(theta)=2pi sin(theta)endalign






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago
















      7












      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago














      7












      7








      7





      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$



      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 11 at 11:23

























      answered Mar 11 at 11:01









      ZackyZacky

      7,74511061




      7,74511061











      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago

















      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago
















      $begingroup$
      Nice idea! But how to deal with $I'(0)$?
      $endgroup$
      – Zero
      Mar 11 at 12:50




      $begingroup$
      Nice idea! But how to deal with $I'(0)$?
      $endgroup$
      – Zero
      Mar 11 at 12:50












      $begingroup$
      Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
      $endgroup$
      – Zacky
      Mar 11 at 13:02





      $begingroup$
      Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
      $endgroup$
      – Zacky
      Mar 11 at 13:02













      $begingroup$
      Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
      $endgroup$
      – Zero
      Mar 12 at 0:27




      $begingroup$
      Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
      $endgroup$
      – Zero
      Mar 12 at 0:27












      $begingroup$
      Wait, why doesn't it vanish after plugging $theta=0$?
      $endgroup$
      – Zacky
      2 days ago




      $begingroup$
      Wait, why doesn't it vanish after plugging $theta=0$?
      $endgroup$
      – Zacky
      2 days ago












      $begingroup$
      My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
      $endgroup$
      – Zero
      13 hours ago





      $begingroup$
      My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
      $endgroup$
      – Zero
      13 hours ago












      5












      $begingroup$

      For $theta in [0;pi]$,
      beginalign
      J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
      endalign

      Perform the change of variable $y=dfrac1x$,



      beginalign
      J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
      endalign



      For $ageq -1$, define the function $F$ by,
      beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
      &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
      &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
      endalign

      Perform the change of variable $y=dfrac1x$,
      beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
      &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
      endalign

      Therefore,
      beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
      &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
      &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
      endalign

      Perform the change of variable $y=x-dfrac1x$,
      beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
      &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
      &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
      &=boxedpisqrt2(1+a)
      endalign



      Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



      beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
      &=2times 2sin^2 (theta)\
      &=4times sin^2 (theta)\
      endalign

      Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



      Therefore,
      beginalignboxedJ(theta)=2pi sin(theta)endalign






      share|cite|improve this answer









      $endgroup$

















        5












        $begingroup$

        For $theta in [0;pi]$,
        beginalign
        J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
        endalign

        Perform the change of variable $y=dfrac1x$,



        beginalign
        J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
        endalign



        For $ageq -1$, define the function $F$ by,
        beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
        &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
        &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
        endalign

        Perform the change of variable $y=dfrac1x$,
        beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
        &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
        endalign

        Therefore,
        beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
        &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
        &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
        endalign

        Perform the change of variable $y=x-dfrac1x$,
        beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
        &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
        &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
        &=boxedpisqrt2(1+a)
        endalign



        Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



        beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
        &=2times 2sin^2 (theta)\
        &=4times sin^2 (theta)\
        endalign

        Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



        Therefore,
        beginalignboxedJ(theta)=2pi sin(theta)endalign






        share|cite|improve this answer









        $endgroup$















          5












          5








          5





          $begingroup$

          For $theta in [0;pi]$,
          beginalign
          J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
          endalign

          Perform the change of variable $y=dfrac1x$,



          beginalign
          J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
          endalign



          For $ageq -1$, define the function $F$ by,
          beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
          &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          endalign

          Perform the change of variable $y=dfrac1x$,
          beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
          &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
          endalign

          Therefore,
          beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
          endalign

          Perform the change of variable $y=x-dfrac1x$,
          beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
          &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
          &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
          &=boxedpisqrt2(1+a)
          endalign



          Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



          beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
          &=2times 2sin^2 (theta)\
          &=4times sin^2 (theta)\
          endalign

          Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



          Therefore,
          beginalignboxedJ(theta)=2pi sin(theta)endalign






          share|cite|improve this answer









          $endgroup$



          For $theta in [0;pi]$,
          beginalign
          J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
          endalign

          Perform the change of variable $y=dfrac1x$,



          beginalign
          J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
          endalign



          For $ageq -1$, define the function $F$ by,
          beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
          &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          endalign

          Perform the change of variable $y=dfrac1x$,
          beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
          &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
          endalign

          Therefore,
          beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
          endalign

          Perform the change of variable $y=x-dfrac1x$,
          beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
          &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
          &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
          &=boxedpisqrt2(1+a)
          endalign



          Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



          beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
          &=2times 2sin^2 (theta)\
          &=4times sin^2 (theta)\
          endalign

          Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



          Therefore,
          beginalignboxedJ(theta)=2pi sin(theta)endalign







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 11 at 19:49









          FDPFDP

          6,15211829




          6,15211829





















              4












              $begingroup$

              To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






                  share|cite|improve this answer









                  $endgroup$



                  To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 11 at 11:08









                  J.G.J.G.

                  29.9k22947




                  29.9k22947



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye