Proving $int_0^infty logleft (1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$Computing $int_0^pilnleft(1-2acos x+a^2right) , dx$Find the integral of log(1 - a/x^2 + 1/x^4) from 0 to infinityEvaluating $int_0^largefracpi4 logleft( cos xright) , mathrmdx $$iint_D cos left( fracx-yx+y right),dA$Evaluate: $int_0^pi ln left( sin theta right) dtheta$Computation of $int_0^pi fracsin^n theta(1+x^2-2x cdot cos theta)^fracn2 , dtheta$A Challenging Integral $int_0^fracpi2log left( x^2+log^2(cos x)right)dx$Log Sine: $int_0^pi theta^2 ln^2big(2sinfractheta2big)d theta.$Prove $cos(2theta) + cosleft(2 left(fracpi3 + thetaright)right) +cosleft(2 left(frac2pi3 + thetaright)right) = 0$Closed form of $int_0^pi/2 fracarctan^2 (sin^2 theta)sin^2 theta,dtheta$Interesting integral: $I=int_0^1 int_0^1 logleft( cos(pi x)^2 + cos(pi y)^2 right)dxdy$Substitutions for the trigonometric integral $int cos theta cos^5left(sin thetaright) dtheta$

Meaning of "SEVERA INDEOVI VAS" from 3rd Century slab

I need to drive a 7/16" nut but am unsure how to use the socket I bought for my screwdriver

It's a yearly task, alright

Does this property of comaximal ideals always holds?

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

Good allowance savings plan?

My adviser wants to be the first author

Make a transparent 448*448 image

How could a scammer know the apps on my phone / iTunes account?

How is the Swiss post e-voting system supposed to work, and how was it wrong?

Distribution of Maximum Likelihood Estimator

What has been your most complicated TikZ drawing?

Is it true that real estate prices mainly go up?

Humanity loses the vast majority of its technology, information, and population in the year 2122. How long does it take to rebuild itself?

Rules about breaking the rules. How do I do it well?

Is it possible that AIC = BIC?

Is a lawful good "antagonist" effective?

Calculus II Professor will not accept my correct integral evaluation that uses a different method, should I bring this up further?

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

PlotLabels with equations not expressions

Converting Functions to Arrow functions

Why doesn't using two cd commands in bash script execute the second command?

What is IP squat space

How do I interpret this "sky cover" chart?



Proving $int_0^infty logleft (1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$


Computing $int_0^pilnleft(1-2acos x+a^2right) , dx$Find the integral of log(1 - a/x^2 + 1/x^4) from 0 to infinityEvaluating $int_0^largefracpi4 logleft( cos xright) , mathrmdx $$iint_D cos left( fracx-yx+y right),dA$Evaluate: $int_0^pi ln left( sin theta right) dtheta$Computation of $int_0^pi fracsin^n theta(1+x^2-2x cdot cos theta)^fracn2 , dtheta$A Challenging Integral $int_0^fracpi2log left( x^2+log^2(cos x)right)dx$Log Sine: $int_0^pi theta^2 ln^2big(2sinfractheta2big)d theta.$Prove $cos(2theta) + cosleft(2 left(fracpi3 + thetaright)right) +cosleft(2 left(frac2pi3 + thetaright)right) = 0$Closed form of $int_0^pi/2 fracarctan^2 (sin^2 theta)sin^2 theta,dtheta$Interesting integral: $I=int_0^1 int_0^1 logleft( cos(pi x)^2 + cos(pi y)^2 right)dxdy$Substitutions for the trigonometric integral $int cos theta cos^5left(sin thetaright) dtheta$













8












$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11















8












$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11













8












8








8


2



$begingroup$



Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.










share|cite|improve this question











$endgroup$





Prove $$int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dx =2pi sin theta$$where $thetain[0,pi]$.




I've met another similar problem,
$$ int_0^2pi log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.



And I got stuck on the proposition in the title. I found that
$$1-2fraccos 2thetax^2+frac1x^4 =left(frac1x-e^ithetaright)left(frac1x+e^ithetaright)left(frac1x-e^-ithetaright)left(frac1x+e^-ithetaright)$$
But I couldn't move on.



Any hints? Thanks in advance.







calculus integration trigonometry definite-integrals logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 12:18







Zero

















asked Mar 11 at 10:20









ZeroZero

47210




47210











  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11
















  • $begingroup$
    Maybe you can complete a square and make a substitution afterwards.
    $endgroup$
    – mathreadler
    Mar 11 at 10:30






  • 1




    $begingroup$
    I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
    $endgroup$
    – Zacky
    Mar 11 at 11:11















$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30




$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30




1




1




$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11




$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11










3 Answers
3






active

oldest

votes


















7












$begingroup$

We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
$$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
$$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
$$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Nice idea! But how to deal with $I'(0)$?
    $endgroup$
    – Zero
    Mar 11 at 12:50










  • $begingroup$
    Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
    $endgroup$
    – Zacky
    Mar 11 at 13:02











  • $begingroup$
    Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
    $endgroup$
    – Zero
    Mar 12 at 0:27










  • $begingroup$
    Wait, why doesn't it vanish after plugging $theta=0$?
    $endgroup$
    – Zacky
    2 days ago










  • $begingroup$
    My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
    $endgroup$
    – Zero
    13 hours ago



















5












$begingroup$

For $theta in [0;pi]$,
beginalign
J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
endalign

Perform the change of variable $y=dfrac1x$,



beginalign
J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
endalign



For $ageq -1$, define the function $F$ by,
beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
&=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
&=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
endalign

Perform the change of variable $y=dfrac1x$,
beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
&=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
endalign

Therefore,
beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
&=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
&=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
endalign

Perform the change of variable $y=x-dfrac1x$,
beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
&=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
&=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
&=boxedpisqrt2(1+a)
endalign



Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
endalign

Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



Therefore,
beginalignboxedJ(theta)=2pi sin(theta)endalign






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago
















      7












      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago














      7












      7








      7





      $begingroup$

      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$






      share|cite|improve this answer











      $endgroup$



      We start off by some $xrightarrow frac1x$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2fraccos 2thetax^2+frac1x^4 right)dxoversetxrightarrow frac1x=int_0^infty fracln(1- 2cos(2theta) x^2 +x^4)x^2dx$$
      $$I'(theta)=4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dxoversetxrightarrow frac1x=4int_0^infty fracsin(2theta)x^2x^4-2cos(2theta)x^2+1dx$$
      Now summing up the two integrals from above gives us:
      $$Rightarrow 2I'(theta)=4int_0^infty fracsin(2theta)(1+x^2)x^4-2cos(2theta)x^2+1dx=4int_0^infty fracsin(2theta)left(frac1x^2+1right)x^2+frac1x^2-2cos(2theta)dx$$
      $$Rightarrow I'(theta)=2int_0^infty fracsin(2theta)left(x-frac1xright)'left(x-frac1xright)^2 +2(1-cos(2theta))dxoversetlarge x- frac1x=t=2int_-infty^infty fracsin(2theta)t^2 +4sin^2 (theta)dt$$
      $$=2 fracsin(2theta)2sin(theta)arctanleft(fract2sin(theta)right)bigg|_-infty^infty=2cos(theta) cdot pi$$
      $$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
      But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxedI(theta)=2pisin(theta)$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 11 at 11:23

























      answered Mar 11 at 11:01









      ZackyZacky

      7,74511061




      7,74511061











      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago

















      • $begingroup$
        Nice idea! But how to deal with $I'(0)$?
        $endgroup$
        – Zero
        Mar 11 at 12:50










      • $begingroup$
        Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
        $endgroup$
        – Zacky
        Mar 11 at 13:02











      • $begingroup$
        Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
        $endgroup$
        – Zero
        Mar 12 at 0:27










      • $begingroup$
        Wait, why doesn't it vanish after plugging $theta=0$?
        $endgroup$
        – Zacky
        2 days ago










      • $begingroup$
        My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
        $endgroup$
        – Zero
        13 hours ago
















      $begingroup$
      Nice idea! But how to deal with $I'(0)$?
      $endgroup$
      – Zero
      Mar 11 at 12:50




      $begingroup$
      Nice idea! But how to deal with $I'(0)$?
      $endgroup$
      – Zero
      Mar 11 at 12:50












      $begingroup$
      Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
      $endgroup$
      – Zacky
      Mar 11 at 13:02





      $begingroup$
      Well, just plugg $theta =0$ here: $$4int_0^infty fracsin(2theta)x^4-2cos(2theta)x^2+1dx$$
      $endgroup$
      – Zacky
      Mar 11 at 13:02













      $begingroup$
      Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
      $endgroup$
      – Zero
      Mar 12 at 0:27




      $begingroup$
      Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac0(x^2-1)^2dx$ , which is not integrable. Did I miss something?
      $endgroup$
      – Zero
      Mar 12 at 0:27












      $begingroup$
      Wait, why doesn't it vanish after plugging $theta=0$?
      $endgroup$
      – Zacky
      2 days ago




      $begingroup$
      Wait, why doesn't it vanish after plugging $theta=0$?
      $endgroup$
      – Zacky
      2 days ago












      $begingroup$
      My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
      $endgroup$
      – Zero
      13 hours ago





      $begingroup$
      My thought: If you put $I'(theta)=4int_0^infty fracsin (2theta)x^4-2cos(2theta)x^2+1dx$, then $I'(0)=4int_0^infty frac0(x^2-1)^2$ which doesn't equal to $2pi$
      $endgroup$
      – Zero
      13 hours ago












      5












      $begingroup$

      For $theta in [0;pi]$,
      beginalign
      J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
      endalign

      Perform the change of variable $y=dfrac1x$,



      beginalign
      J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
      endalign



      For $ageq -1$, define the function $F$ by,
      beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
      &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
      &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
      endalign

      Perform the change of variable $y=dfrac1x$,
      beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
      &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
      endalign

      Therefore,
      beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
      &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
      &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
      endalign

      Perform the change of variable $y=x-dfrac1x$,
      beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
      &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
      &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
      &=boxedpisqrt2(1+a)
      endalign



      Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



      beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
      &=2times 2sin^2 (theta)\
      &=4times sin^2 (theta)\
      endalign

      Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



      Therefore,
      beginalignboxedJ(theta)=2pi sin(theta)endalign






      share|cite|improve this answer









      $endgroup$

















        5












        $begingroup$

        For $theta in [0;pi]$,
        beginalign
        J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
        endalign

        Perform the change of variable $y=dfrac1x$,



        beginalign
        J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
        endalign



        For $ageq -1$, define the function $F$ by,
        beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
        &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
        &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
        endalign

        Perform the change of variable $y=dfrac1x$,
        beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
        &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
        endalign

        Therefore,
        beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
        &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
        &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
        endalign

        Perform the change of variable $y=x-dfrac1x$,
        beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
        &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
        &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
        &=boxedpisqrt2(1+a)
        endalign



        Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



        beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
        &=2times 2sin^2 (theta)\
        &=4times sin^2 (theta)\
        endalign

        Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



        Therefore,
        beginalignboxedJ(theta)=2pi sin(theta)endalign






        share|cite|improve this answer









        $endgroup$















          5












          5








          5





          $begingroup$

          For $theta in [0;pi]$,
          beginalign
          J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
          endalign

          Perform the change of variable $y=dfrac1x$,



          beginalign
          J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
          endalign



          For $ageq -1$, define the function $F$ by,
          beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
          &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          endalign

          Perform the change of variable $y=dfrac1x$,
          beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
          &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
          endalign

          Therefore,
          beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
          endalign

          Perform the change of variable $y=x-dfrac1x$,
          beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
          &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
          &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
          &=boxedpisqrt2(1+a)
          endalign



          Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



          beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
          &=2times 2sin^2 (theta)\
          &=4times sin^2 (theta)\
          endalign

          Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



          Therefore,
          beginalignboxedJ(theta)=2pi sin(theta)endalign






          share|cite|improve this answer









          $endgroup$



          For $theta in [0;pi]$,
          beginalign
          J(theta)&=int_0^infty lnleft(1-frac2cos(2theta)x^2+frac1x^4right) ,dx
          endalign

          Perform the change of variable $y=dfrac1x$,



          beginalign
          J(theta)&=int_0^infty fraclnleft(1-2cos(2theta)x^2+x^4right)x^2 ,dx
          endalign



          For $ageq -1$, define the function $F$ by,
          beginalignF(a)&=int_0^infty fraclnleft(1+2ax^2+x^4right)x^2 ,dx\
          &=left[-fraclnleft(1+2ax^2+x^4right)xright]_0^infty+int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          &=int_0^infty frac4left(x^2+aright)1+2ax^2+x^4,dx\
          endalign

          Perform the change of variable $y=dfrac1x$,
          beginalignF(a)&=int_0^infty frac4left( frac1x^2+aright) x^2left(1+frac2ax^2+frac1x^4right) ,dx\
          &=int_0^infty frac4left( 1+ax^2right) x^4+2ax^2+1 ,dx\
          endalign

          Therefore,
          beginalignF(a)&=int_0^infty frac2(a+1)left( 1+x^2right) x^4+2ax^2+1 ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)x^2+frac1x^2+2a ,dx\
          &=2(a+1)int_0^infty fracleft(1+frac1x^2right)left(x-frac1xright)^2+2(a+1) ,dx\
          endalign

          Perform the change of variable $y=x-dfrac1x$,
          beginalignF(a)&= 2(a+1)int_-infty^+inftyfrac1x^2+2(a+1),dx\
          &=4(a+1)int_0^+inftyfrac1x^2+2(a+1),dx\
          &=left[2sqrt2(a+1)arctanleft( fracxsqrt2(a+1) right)right]_0^infty\
          &=boxedpisqrt2(1+a)
          endalign



          Observe that, $J(theta)=Fbig(-cos(2theta)big)$.



          beginalign 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
          &=2times 2sin^2 (theta)\
          &=4times sin^2 (theta)\
          endalign

          Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt2(1-cos(2theta))=2sin(theta)$



          Therefore,
          beginalignboxedJ(theta)=2pi sin(theta)endalign







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 11 at 19:49









          FDPFDP

          6,15211829




          6,15211829





















              4












              $begingroup$

              To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.






                  share|cite|improve this answer









                  $endgroup$



                  To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac1x$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^-2|dx=2int_0^1left[(1+frac1x^2)ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_nge 0fracx^2nn+1+2ln xright]dx=-2int_0^1left[sum_nge 0left(fracx^2nn+1+fracx^2n+2n+1right)+2ln xright]dx\=-2left[sum_nge 0left(fracx^2n+1(n+1)(2n+1)+fracx^2n+3(n+1)(2n+3)right)+2xln x-2xright]_0^1\=-2left[sum_nge 0left(frac4(2n+1)(2n+3)right)-2right],$$which vanishes by partial fractions.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 11 at 11:08









                  J.G.J.G.

                  29.9k22947




                  29.9k22947



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                      Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                      Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers