How to compute $gcd(d^large 671! +! 1, d^large 610! −!1), d = gcd(51^large 610! +! 1, 51^large 671! −!1)$ The Next CEO of Stack OverflowShow $(2^m-1,2^n+1)=1$ if $m$ is oddWhat is $gcd(61^610+1,61^671-1)$?find $G=gcd(a^m+1,a^n+1)$ from a problemHow to compute the gcd $(61^610+1,61^671−1)$Is there any relation between GCD and modulo??What is $gcd(0,0)$?GCD, LCM RelationshipPairs of integers with gcd equal to a given numberUnderstanding the Existence and Uniqueness of the GCDGCD(100!,1.9442173520703009076224 × 10^22)The biggest $gcd(11n+4, 7n+2)$?GCD of two number!GCD and exponentiation of large numbersNo gcd$left(6, 3+3sqrt-5right)$ in $mathbbZ[sqrt-5]$How to compute the gcd $(61^610+1,61^671−1)$

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Is a distribution that is normal, but highly skewed considered Gaussian?

How did people program for Consoles with multiple CPUs?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Why do airplanes bank sharply to the right after air-to-air refueling?

Method for adding error messages to a dictionary given a key

What flight has the highest ratio of timezone difference to flight time?

Running a General Election and the European Elections together

If the heap is zero-initialized for security, then why is the stack merely uninitialized?

RigExpert AA-35 - Interpreting The Information

Can we say or write : "No, it'sn't"?

Make solar eclipses exceedingly rare, but still have new moons

Is there a way to save my career from absolute disaster?

Won the lottery - how do I keep the money?

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

Where do students learn to solve polynomial equations these days?

Would a completely good Muggle be able to use a wand?

What connection does MS Office have to Netscape Navigator?

Is French Guiana a (hard) EU border?

Can MTA send mail via a relay without being told so?

Rotate a column

Domestic-to-international connection at Orlando (MCO)

The exact meaning of 'Mom made me a sandwich'

How to delete every two lines after 3rd lines in a file contains very large number of lines?



How to compute $gcd(d^large 671! +! 1, d^large 610! −!1), d = gcd(51^large 610! +! 1, 51^large 671! −!1)$



The Next CEO of Stack OverflowShow $(2^m-1,2^n+1)=1$ if $m$ is oddWhat is $gcd(61^610+1,61^671-1)$?find $G=gcd(a^m+1,a^n+1)$ from a problemHow to compute the gcd $(61^610+1,61^671−1)$Is there any relation between GCD and modulo??What is $gcd(0,0)$?GCD, LCM RelationshipPairs of integers with gcd equal to a given numberUnderstanding the Existence and Uniqueness of the GCDGCD(100!,1.9442173520703009076224 × 10^22)The biggest $gcd(11n+4, 7n+2)$?GCD of two number!GCD and exponentiation of large numbersNo gcd$left(6, 3+3sqrt-5right)$ in $mathbbZ[sqrt-5]$How to compute the gcd $(61^610+1,61^671−1)$










1












$begingroup$


Let $(a,b)$ denote the greatest common divisor of $a$ and $b$.



With $ d = (51^large 610! + 1,, 51^large 671! −1)$



and $ x ,=, (d^large 671 + 1,, d^large 610 −1 )$



find $ X = (xbmod 10)$



I used $y=51^61$ to reduce $d$ to $d=(y^10+1,y^11-1) = (y^10+1,y+1)$.



What should I do now?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
    $endgroup$
    – Bill Dubuque
    Mar 19 at 15:54











  • $begingroup$
    As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
    $endgroup$
    – lonza leggiera
    Mar 19 at 16:09











  • $begingroup$
    The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
    $endgroup$
    – Bill Dubuque
    Mar 20 at 0:27











  • $begingroup$
    Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 9:55











  • $begingroup$
    And I do need to find d at first @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 10:06















1












$begingroup$


Let $(a,b)$ denote the greatest common divisor of $a$ and $b$.



With $ d = (51^large 610! + 1,, 51^large 671! −1)$



and $ x ,=, (d^large 671 + 1,, d^large 610 −1 )$



find $ X = (xbmod 10)$



I used $y=51^61$ to reduce $d$ to $d=(y^10+1,y^11-1) = (y^10+1,y+1)$.



What should I do now?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
    $endgroup$
    – Bill Dubuque
    Mar 19 at 15:54











  • $begingroup$
    As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
    $endgroup$
    – lonza leggiera
    Mar 19 at 16:09











  • $begingroup$
    The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
    $endgroup$
    – Bill Dubuque
    Mar 20 at 0:27











  • $begingroup$
    Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 9:55











  • $begingroup$
    And I do need to find d at first @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 10:06













1












1








1


1



$begingroup$


Let $(a,b)$ denote the greatest common divisor of $a$ and $b$.



With $ d = (51^large 610! + 1,, 51^large 671! −1)$



and $ x ,=, (d^large 671 + 1,, d^large 610 −1 )$



find $ X = (xbmod 10)$



I used $y=51^61$ to reduce $d$ to $d=(y^10+1,y^11-1) = (y^10+1,y+1)$.



What should I do now?










share|cite|improve this question











$endgroup$




Let $(a,b)$ denote the greatest common divisor of $a$ and $b$.



With $ d = (51^large 610! + 1,, 51^large 671! −1)$



and $ x ,=, (d^large 671 + 1,, d^large 610 −1 )$



find $ X = (xbmod 10)$



I used $y=51^61$ to reduce $d$ to $d=(y^10+1,y^11-1) = (y^10+1,y+1)$.



What should I do now?







elementary-number-theory greatest-common-divisor






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 22 at 23:40









Bill Dubuque

213k29196654




213k29196654










asked Mar 19 at 12:49









rj123rj123

62




62











  • $begingroup$
    Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
    $endgroup$
    – Bill Dubuque
    Mar 19 at 15:54











  • $begingroup$
    As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
    $endgroup$
    – lonza leggiera
    Mar 19 at 16:09











  • $begingroup$
    The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
    $endgroup$
    – Bill Dubuque
    Mar 20 at 0:27











  • $begingroup$
    Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 9:55











  • $begingroup$
    And I do need to find d at first @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 10:06
















  • $begingroup$
    Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
    $endgroup$
    – Bill Dubuque
    Mar 19 at 15:54











  • $begingroup$
    As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
    $endgroup$
    – lonza leggiera
    Mar 19 at 16:09











  • $begingroup$
    The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
    $endgroup$
    – Bill Dubuque
    Mar 20 at 0:27











  • $begingroup$
    Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 9:55











  • $begingroup$
    And I do need to find d at first @BillDubuque
    $endgroup$
    – rj123
    Mar 21 at 10:06















$begingroup$
Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
$endgroup$
– Bill Dubuque
Mar 19 at 15:54





$begingroup$
Were you previously taught any method to find gcds of the form $,(a^j+1,a^k-1)$? Does "trick" mean a method of computing said gcd $!bmod 10$ that is (much) simpler than computing the gcd then reducing it $bmod 10$?
$endgroup$
– Bill Dubuque
Mar 19 at 15:54













$begingroup$
As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
$endgroup$
– lonza leggiera
Mar 19 at 16:09





$begingroup$
As a further hint, note that if $ y=x^61 $, then $ x^610+1= y^10+1 $ and $ x^671-1=y^11-1 $.
$endgroup$
– lonza leggiera
Mar 19 at 16:09













$begingroup$
The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
$endgroup$
– Bill Dubuque
Mar 20 at 0:27





$begingroup$
The reduction to the case of coprime exponents in the prior comment of @Ionza works generally, e.g. see this answer. We can handle this problem in a very similar manner as I do there. See also this answer.
$endgroup$
– Bill Dubuque
Mar 20 at 0:27













$begingroup$
Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
$endgroup$
– rj123
Mar 21 at 9:55





$begingroup$
Yeah i want to know the method for computing $(a^j+1,a^k-1)$ I mean how to derive this formula @BillDubuque
$endgroup$
– rj123
Mar 21 at 9:55













$begingroup$
And I do need to find d at first @BillDubuque
$endgroup$
– rj123
Mar 21 at 10:06




$begingroup$
And I do need to find d at first @BillDubuque
$endgroup$
– rj123
Mar 21 at 10:06










3 Answers
3






active

oldest

votes


















0












$begingroup$

First note: $gcd(a^m pm 1, a+1)=gcd((a^mpm 1)-(a^m+a^m-1),a+1) = gcd(a^m-1mp 1, a+1)$



And via induction $gcd(a^m+1, a+1) = gcd(2, a+1)$ if $m$ is even. $gcd(a^m - 1,a+1) =gcd(0, a+1) = a+1$ if $m$ is even. (And the opposite results if $m$ is odd).



so if we let $a= 51^61$.



Then $gcd(51^610 + 1, 51^671 - 1)=$



$gcd(a^11-1,a^10 + 1)=$



$gcd((a^11 -1)-(a^11 + a), a^10 + 1) =$



$gcd(a^10 + 1, a+ 1) = 2$



...



Let $b = 2^61$ and so



$gcd(2^671+1, 2^610 -1)= gcd (b^11 + 1, b^10 -1)=$



$gcd((b^11+1)-(b^11-b), b^10-1)=gcd(b^10-1,b+1)=b+1= 2^61+1$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    As in the proofs here and here, we reduce to coprime powers then apply the $rmcolor#90fEuclidean$ algorithm.



    $a = 51^large 61Rightarrow, d = (a^large 11-1,,a^large 10+1) = (a!+!1,2) = 2,$ by $,bf T1,$ below, with $ s = -1$



    $a, =, d^large 61Rightarrow,x = (a^large 11+1,,a^large 10-1) =, a!+!1 = d^large 61!+1 = 2^large 61!+1,$ by $,bf T1,,$ $,s = 1$



    $bf T1, (s,a)! =!1, Rightarrow, (a^large 11!+s,,a^large 10-s), = (a!+!1,,1!-!s). $ Proof: $,rmcolor#90fusing$ $ (x,y) = (x,, ybmod x)$



    $beginalign (color#0a0a^large 11!+s,,a^large 10!-s) &= (color#0a0s(color#0a0 a!+!1),, a^large 10!-s) ,rm by bmod a^large 10!-s!:, a^large 10!equiv s,Rightarrow, color#0a0a^large 11!equiv a^large 10a equiv color#0a0sa \[.2em]
    &= , (a!+!1, ,color#c00a^large 10!-s) rm by, (s,,a^large 10!-s) = (s,a^large 10)=1, , rm by, (s,a) = 1\[.2em]
    &= (a!+!1, color#c001, -, s) rm by bmod a+1!: aequiv -1,Rightarrow, color#c00a^10equiv (-1)^10equivcolor#c00 1 \[.2em]
    endalign$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
      $endgroup$
      – Bill Dubuque
      Mar 22 at 23:29


















    0












    $begingroup$

    $$51^671=51^610times 51^61-1=(51^610+1)51^61-(51^61+1)$$



    $$(51^61, 51^61+1)=1$$



    So we may write:



    $$d=(51^610+1, 51^671-1)=(51^610+1, 51^61+1)$$



    $$51^61+1=52 k=2times 26 k$$



    $$51^610+1=52 k_1 +2=2(26 k_1+1)$$



    $$(26, 26k_1+1)=1$$



    However $k$ and $26 k_1+1$ may have common divisors. If we assume $d=2$ then we have:



    $$x=(2^671+1, 2^610-1) $$



    $$2^671+1=(2^610-1)2^61 +2^61+1$$



    $(2^61,2^61+1)=1$, Therefore:



    $$x= 2^61+1$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154020%2fhow-to-compute-gcdd-large-671-1-d-large-610-%25e2%2588%2592-1-d-gcd5%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      First note: $gcd(a^m pm 1, a+1)=gcd((a^mpm 1)-(a^m+a^m-1),a+1) = gcd(a^m-1mp 1, a+1)$



      And via induction $gcd(a^m+1, a+1) = gcd(2, a+1)$ if $m$ is even. $gcd(a^m - 1,a+1) =gcd(0, a+1) = a+1$ if $m$ is even. (And the opposite results if $m$ is odd).



      so if we let $a= 51^61$.



      Then $gcd(51^610 + 1, 51^671 - 1)=$



      $gcd(a^11-1,a^10 + 1)=$



      $gcd((a^11 -1)-(a^11 + a), a^10 + 1) =$



      $gcd(a^10 + 1, a+ 1) = 2$



      ...



      Let $b = 2^61$ and so



      $gcd(2^671+1, 2^610 -1)= gcd (b^11 + 1, b^10 -1)=$



      $gcd((b^11+1)-(b^11-b), b^10-1)=gcd(b^10-1,b+1)=b+1= 2^61+1$






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        First note: $gcd(a^m pm 1, a+1)=gcd((a^mpm 1)-(a^m+a^m-1),a+1) = gcd(a^m-1mp 1, a+1)$



        And via induction $gcd(a^m+1, a+1) = gcd(2, a+1)$ if $m$ is even. $gcd(a^m - 1,a+1) =gcd(0, a+1) = a+1$ if $m$ is even. (And the opposite results if $m$ is odd).



        so if we let $a= 51^61$.



        Then $gcd(51^610 + 1, 51^671 - 1)=$



        $gcd(a^11-1,a^10 + 1)=$



        $gcd((a^11 -1)-(a^11 + a), a^10 + 1) =$



        $gcd(a^10 + 1, a+ 1) = 2$



        ...



        Let $b = 2^61$ and so



        $gcd(2^671+1, 2^610 -1)= gcd (b^11 + 1, b^10 -1)=$



        $gcd((b^11+1)-(b^11-b), b^10-1)=gcd(b^10-1,b+1)=b+1= 2^61+1$






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          First note: $gcd(a^m pm 1, a+1)=gcd((a^mpm 1)-(a^m+a^m-1),a+1) = gcd(a^m-1mp 1, a+1)$



          And via induction $gcd(a^m+1, a+1) = gcd(2, a+1)$ if $m$ is even. $gcd(a^m - 1,a+1) =gcd(0, a+1) = a+1$ if $m$ is even. (And the opposite results if $m$ is odd).



          so if we let $a= 51^61$.



          Then $gcd(51^610 + 1, 51^671 - 1)=$



          $gcd(a^11-1,a^10 + 1)=$



          $gcd((a^11 -1)-(a^11 + a), a^10 + 1) =$



          $gcd(a^10 + 1, a+ 1) = 2$



          ...



          Let $b = 2^61$ and so



          $gcd(2^671+1, 2^610 -1)= gcd (b^11 + 1, b^10 -1)=$



          $gcd((b^11+1)-(b^11-b), b^10-1)=gcd(b^10-1,b+1)=b+1= 2^61+1$






          share|cite|improve this answer









          $endgroup$



          First note: $gcd(a^m pm 1, a+1)=gcd((a^mpm 1)-(a^m+a^m-1),a+1) = gcd(a^m-1mp 1, a+1)$



          And via induction $gcd(a^m+1, a+1) = gcd(2, a+1)$ if $m$ is even. $gcd(a^m - 1,a+1) =gcd(0, a+1) = a+1$ if $m$ is even. (And the opposite results if $m$ is odd).



          so if we let $a= 51^61$.



          Then $gcd(51^610 + 1, 51^671 - 1)=$



          $gcd(a^11-1,a^10 + 1)=$



          $gcd((a^11 -1)-(a^11 + a), a^10 + 1) =$



          $gcd(a^10 + 1, a+ 1) = 2$



          ...



          Let $b = 2^61$ and so



          $gcd(2^671+1, 2^610 -1)= gcd (b^11 + 1, b^10 -1)=$



          $gcd((b^11+1)-(b^11-b), b^10-1)=gcd(b^10-1,b+1)=b+1= 2^61+1$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 22 at 19:38









          fleabloodfleablood

          73.6k22891




          73.6k22891





















              0












              $begingroup$

              As in the proofs here and here, we reduce to coprime powers then apply the $rmcolor#90fEuclidean$ algorithm.



              $a = 51^large 61Rightarrow, d = (a^large 11-1,,a^large 10+1) = (a!+!1,2) = 2,$ by $,bf T1,$ below, with $ s = -1$



              $a, =, d^large 61Rightarrow,x = (a^large 11+1,,a^large 10-1) =, a!+!1 = d^large 61!+1 = 2^large 61!+1,$ by $,bf T1,,$ $,s = 1$



              $bf T1, (s,a)! =!1, Rightarrow, (a^large 11!+s,,a^large 10-s), = (a!+!1,,1!-!s). $ Proof: $,rmcolor#90fusing$ $ (x,y) = (x,, ybmod x)$



              $beginalign (color#0a0a^large 11!+s,,a^large 10!-s) &= (color#0a0s(color#0a0 a!+!1),, a^large 10!-s) ,rm by bmod a^large 10!-s!:, a^large 10!equiv s,Rightarrow, color#0a0a^large 11!equiv a^large 10a equiv color#0a0sa \[.2em]
              &= , (a!+!1, ,color#c00a^large 10!-s) rm by, (s,,a^large 10!-s) = (s,a^large 10)=1, , rm by, (s,a) = 1\[.2em]
              &= (a!+!1, color#c001, -, s) rm by bmod a+1!: aequiv -1,Rightarrow, color#c00a^10equiv (-1)^10equivcolor#c00 1 \[.2em]
              endalign$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
                $endgroup$
                – Bill Dubuque
                Mar 22 at 23:29















              0












              $begingroup$

              As in the proofs here and here, we reduce to coprime powers then apply the $rmcolor#90fEuclidean$ algorithm.



              $a = 51^large 61Rightarrow, d = (a^large 11-1,,a^large 10+1) = (a!+!1,2) = 2,$ by $,bf T1,$ below, with $ s = -1$



              $a, =, d^large 61Rightarrow,x = (a^large 11+1,,a^large 10-1) =, a!+!1 = d^large 61!+1 = 2^large 61!+1,$ by $,bf T1,,$ $,s = 1$



              $bf T1, (s,a)! =!1, Rightarrow, (a^large 11!+s,,a^large 10-s), = (a!+!1,,1!-!s). $ Proof: $,rmcolor#90fusing$ $ (x,y) = (x,, ybmod x)$



              $beginalign (color#0a0a^large 11!+s,,a^large 10!-s) &= (color#0a0s(color#0a0 a!+!1),, a^large 10!-s) ,rm by bmod a^large 10!-s!:, a^large 10!equiv s,Rightarrow, color#0a0a^large 11!equiv a^large 10a equiv color#0a0sa \[.2em]
              &= , (a!+!1, ,color#c00a^large 10!-s) rm by, (s,,a^large 10!-s) = (s,a^large 10)=1, , rm by, (s,a) = 1\[.2em]
              &= (a!+!1, color#c001, -, s) rm by bmod a+1!: aequiv -1,Rightarrow, color#c00a^10equiv (-1)^10equivcolor#c00 1 \[.2em]
              endalign$






              share|cite|improve this answer











              $endgroup$












              • $begingroup$
                Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
                $endgroup$
                – Bill Dubuque
                Mar 22 at 23:29













              0












              0








              0





              $begingroup$

              As in the proofs here and here, we reduce to coprime powers then apply the $rmcolor#90fEuclidean$ algorithm.



              $a = 51^large 61Rightarrow, d = (a^large 11-1,,a^large 10+1) = (a!+!1,2) = 2,$ by $,bf T1,$ below, with $ s = -1$



              $a, =, d^large 61Rightarrow,x = (a^large 11+1,,a^large 10-1) =, a!+!1 = d^large 61!+1 = 2^large 61!+1,$ by $,bf T1,,$ $,s = 1$



              $bf T1, (s,a)! =!1, Rightarrow, (a^large 11!+s,,a^large 10-s), = (a!+!1,,1!-!s). $ Proof: $,rmcolor#90fusing$ $ (x,y) = (x,, ybmod x)$



              $beginalign (color#0a0a^large 11!+s,,a^large 10!-s) &= (color#0a0s(color#0a0 a!+!1),, a^large 10!-s) ,rm by bmod a^large 10!-s!:, a^large 10!equiv s,Rightarrow, color#0a0a^large 11!equiv a^large 10a equiv color#0a0sa \[.2em]
              &= , (a!+!1, ,color#c00a^large 10!-s) rm by, (s,,a^large 10!-s) = (s,a^large 10)=1, , rm by, (s,a) = 1\[.2em]
              &= (a!+!1, color#c001, -, s) rm by bmod a+1!: aequiv -1,Rightarrow, color#c00a^10equiv (-1)^10equivcolor#c00 1 \[.2em]
              endalign$






              share|cite|improve this answer











              $endgroup$



              As in the proofs here and here, we reduce to coprime powers then apply the $rmcolor#90fEuclidean$ algorithm.



              $a = 51^large 61Rightarrow, d = (a^large 11-1,,a^large 10+1) = (a!+!1,2) = 2,$ by $,bf T1,$ below, with $ s = -1$



              $a, =, d^large 61Rightarrow,x = (a^large 11+1,,a^large 10-1) =, a!+!1 = d^large 61!+1 = 2^large 61!+1,$ by $,bf T1,,$ $,s = 1$



              $bf T1, (s,a)! =!1, Rightarrow, (a^large 11!+s,,a^large 10-s), = (a!+!1,,1!-!s). $ Proof: $,rmcolor#90fusing$ $ (x,y) = (x,, ybmod x)$



              $beginalign (color#0a0a^large 11!+s,,a^large 10!-s) &= (color#0a0s(color#0a0 a!+!1),, a^large 10!-s) ,rm by bmod a^large 10!-s!:, a^large 10!equiv s,Rightarrow, color#0a0a^large 11!equiv a^large 10a equiv color#0a0sa \[.2em]
              &= , (a!+!1, ,color#c00a^large 10!-s) rm by, (s,,a^large 10!-s) = (s,a^large 10)=1, , rm by, (s,a) = 1\[.2em]
              &= (a!+!1, color#c001, -, s) rm by bmod a+1!: aequiv -1,Rightarrow, color#c00a^10equiv (-1)^10equivcolor#c00 1 \[.2em]
              endalign$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Mar 23 at 18:57

























              answered Mar 19 at 14:41









              Bill DubuqueBill Dubuque

              213k29196654




              213k29196654











              • $begingroup$
                Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
                $endgroup$
                – Bill Dubuque
                Mar 22 at 23:29
















              • $begingroup$
                Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
                $endgroup$
                – Bill Dubuque
                Mar 22 at 23:29















              $begingroup$
              Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
              $endgroup$
              – Bill Dubuque
              Mar 22 at 23:29




              $begingroup$
              Thus $,X = (2^large 61!+1bmod 10) = 3, $ by $ 2^large 61! bmod 10 = 2big((2^large 4)^large 15 bmod 5big) = 2 $
              $endgroup$
              – Bill Dubuque
              Mar 22 at 23:29











              0












              $begingroup$

              $$51^671=51^610times 51^61-1=(51^610+1)51^61-(51^61+1)$$



              $$(51^61, 51^61+1)=1$$



              So we may write:



              $$d=(51^610+1, 51^671-1)=(51^610+1, 51^61+1)$$



              $$51^61+1=52 k=2times 26 k$$



              $$51^610+1=52 k_1 +2=2(26 k_1+1)$$



              $$(26, 26k_1+1)=1$$



              However $k$ and $26 k_1+1$ may have common divisors. If we assume $d=2$ then we have:



              $$x=(2^671+1, 2^610-1) $$



              $$2^671+1=(2^610-1)2^61 +2^61+1$$



              $(2^61,2^61+1)=1$, Therefore:



              $$x= 2^61+1$$






              share|cite|improve this answer











              $endgroup$

















                0












                $begingroup$

                $$51^671=51^610times 51^61-1=(51^610+1)51^61-(51^61+1)$$



                $$(51^61, 51^61+1)=1$$



                So we may write:



                $$d=(51^610+1, 51^671-1)=(51^610+1, 51^61+1)$$



                $$51^61+1=52 k=2times 26 k$$



                $$51^610+1=52 k_1 +2=2(26 k_1+1)$$



                $$(26, 26k_1+1)=1$$



                However $k$ and $26 k_1+1$ may have common divisors. If we assume $d=2$ then we have:



                $$x=(2^671+1, 2^610-1) $$



                $$2^671+1=(2^610-1)2^61 +2^61+1$$



                $(2^61,2^61+1)=1$, Therefore:



                $$x= 2^61+1$$






                share|cite|improve this answer











                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  $$51^671=51^610times 51^61-1=(51^610+1)51^61-(51^61+1)$$



                  $$(51^61, 51^61+1)=1$$



                  So we may write:



                  $$d=(51^610+1, 51^671-1)=(51^610+1, 51^61+1)$$



                  $$51^61+1=52 k=2times 26 k$$



                  $$51^610+1=52 k_1 +2=2(26 k_1+1)$$



                  $$(26, 26k_1+1)=1$$



                  However $k$ and $26 k_1+1$ may have common divisors. If we assume $d=2$ then we have:



                  $$x=(2^671+1, 2^610-1) $$



                  $$2^671+1=(2^610-1)2^61 +2^61+1$$



                  $(2^61,2^61+1)=1$, Therefore:



                  $$x= 2^61+1$$






                  share|cite|improve this answer











                  $endgroup$



                  $$51^671=51^610times 51^61-1=(51^610+1)51^61-(51^61+1)$$



                  $$(51^61, 51^61+1)=1$$



                  So we may write:



                  $$d=(51^610+1, 51^671-1)=(51^610+1, 51^61+1)$$



                  $$51^61+1=52 k=2times 26 k$$



                  $$51^610+1=52 k_1 +2=2(26 k_1+1)$$



                  $$(26, 26k_1+1)=1$$



                  However $k$ and $26 k_1+1$ may have common divisors. If we assume $d=2$ then we have:



                  $$x=(2^671+1, 2^610-1) $$



                  $$2^671+1=(2^610-1)2^61 +2^61+1$$



                  $(2^61,2^61+1)=1$, Therefore:



                  $$x= 2^61+1$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Mar 24 at 2:50

























                  answered Mar 21 at 19:45









                  siroussirous

                  1,7051514




                  1,7051514



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154020%2fhow-to-compute-gcdd-large-671-1-d-large-610-%25e2%2588%2592-1-d-gcd5%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye