Expectation of Maximum of Translated GaussianExpected value of cumulative distribution functionCan I make this numerical integration continuously differentiable?Conditional Expectation of the minimum of two identical log-normal distributionsExpectation of the maximum absolute value of gaussian random variablesApproximating the asymptotic behavior of an improper integralIs this bound on the tail of the normal distribution correct?Sum of Independent Half-Normal Distributions with unequal varianceExpectation normal distributionNumerically computing Gaussian integralConditional Expectation of Multivariate Gaussian in Expectation Maximization
Why aren't there more Gauls like Obelix?
How to recover against Snake as a heavyweight character?
Will the concrete slab in a partially heated shed conduct a lot of heat to the unconditioned area?
Who has more? Ireland or Iceland?
Is the differential, dp, exact or not?
Averaging over columns while ignoring zero entries
Why does this boat have a landing pad? (SpaceX's GO Searcher) Any plans for propulsive capsule landings?
Ultrafilters as a double dual
A running toilet that stops itself
A vote on the Brexit backstop
Where is the License file location for Identity Server in Sitecore 9.1?
How can I portion out frozen cookie dough?
Mixed Feelings - What am I
Precision notation for voltmeters
Giving a talk in my old university, how prominently should I tell students my salary?
What is the purpose of a disclaimer like "this is not legal advice"?
Vector-transposing function
Did Amazon pay $0 in taxes last year?
How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?
Generating a list with duplicate entries
How would an energy-based "projectile" blow up a spaceship?
Having the player face themselves after the mid-game
Why would /etc/passwd be used every time someone executes `ls -l` command?
If nine coins are tossed, what is the probability that the number of heads is even?
Expectation of Maximum of Translated Gaussian
Expected value of cumulative distribution functionCan I make this numerical integration continuously differentiable?Conditional Expectation of the minimum of two identical log-normal distributionsExpectation of the maximum absolute value of gaussian random variablesApproximating the asymptotic behavior of an improper integralIs this bound on the tail of the normal distribution correct?Sum of Independent Half-Normal Distributions with unequal varianceExpectation normal distributionNumerically computing Gaussian integralConditional Expectation of Multivariate Gaussian in Expectation Maximization
$begingroup$
Given $Xpropto N(mu,psi^2)$ and $K$ constant, find $E(maxK-X,0)$.
My attempt:
$$
beginalign
E(maxK-X,0)\
&=int_-infty^inftymaxK-x,0f_X(x)dx\
&=int_K^infty(K-x)f_X(x)dx\
&=int_K^infty[(K-mu)-(X-mu)]f_X(x)dx\
&=int_K^infty(K-mu)f_X(x)dx-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)frac1(2pi psi^2)^1/2e^-frac(x-mu)^22psi^2dx\
&=(K-mu)(1-Phi(K))-int_frac(K-mu)^22psi^2^inftypsi^2frac1(2pi psi^2)^1/2e^-zdz\
&=(K-mu)(1-Phi(K))+fracpsisqrt2pie^-z|_frac(K-mu)^22psi^2^infty\
&=(K-mu)(1-Phi(K))-fracpsisqrt2pie^-frac(K-mu)^22psi^2
endalign
$$
where I have used the change of variables $z=frac(x-mu)^22psi^2$.
However, when I check my answer numerically, I see that the integral is not correct. Here is working Python code to check:
import numpy as np
from scipy.stats import norm
from scipy.special import erf
# simulation parameters for checking answers numerically
trials = 100000
K = 0.25
mu = np.pi/2
psi = 3.0
simulated = np.mean([np.max([K-x, 0])
for x in np.random.normal(mu, psi, trials)])
numerical = (K-mu)*(1-norm.cdf(K, mu, psi)) - np.exp(-((K-mu)**2)/(2*psi**2))*psi/np.sqrt(2*np.pi)
print(simulated)
print(numerical)
This gives:
simulated = 0.6448298784565597
numerical = -1.9713797586737627
What is the issue with my integration?
statistics numerical-methods normal-distribution expected-value
New contributor
$endgroup$
add a comment |
$begingroup$
Given $Xpropto N(mu,psi^2)$ and $K$ constant, find $E(maxK-X,0)$.
My attempt:
$$
beginalign
E(maxK-X,0)\
&=int_-infty^inftymaxK-x,0f_X(x)dx\
&=int_K^infty(K-x)f_X(x)dx\
&=int_K^infty[(K-mu)-(X-mu)]f_X(x)dx\
&=int_K^infty(K-mu)f_X(x)dx-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)frac1(2pi psi^2)^1/2e^-frac(x-mu)^22psi^2dx\
&=(K-mu)(1-Phi(K))-int_frac(K-mu)^22psi^2^inftypsi^2frac1(2pi psi^2)^1/2e^-zdz\
&=(K-mu)(1-Phi(K))+fracpsisqrt2pie^-z|_frac(K-mu)^22psi^2^infty\
&=(K-mu)(1-Phi(K))-fracpsisqrt2pie^-frac(K-mu)^22psi^2
endalign
$$
where I have used the change of variables $z=frac(x-mu)^22psi^2$.
However, when I check my answer numerically, I see that the integral is not correct. Here is working Python code to check:
import numpy as np
from scipy.stats import norm
from scipy.special import erf
# simulation parameters for checking answers numerically
trials = 100000
K = 0.25
mu = np.pi/2
psi = 3.0
simulated = np.mean([np.max([K-x, 0])
for x in np.random.normal(mu, psi, trials)])
numerical = (K-mu)*(1-norm.cdf(K, mu, psi)) - np.exp(-((K-mu)**2)/(2*psi**2))*psi/np.sqrt(2*np.pi)
print(simulated)
print(numerical)
This gives:
simulated = 0.6448298784565597
numerical = -1.9713797586737627
What is the issue with my integration?
statistics numerical-methods normal-distribution expected-value
New contributor
$endgroup$
4
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago
add a comment |
$begingroup$
Given $Xpropto N(mu,psi^2)$ and $K$ constant, find $E(maxK-X,0)$.
My attempt:
$$
beginalign
E(maxK-X,0)\
&=int_-infty^inftymaxK-x,0f_X(x)dx\
&=int_K^infty(K-x)f_X(x)dx\
&=int_K^infty[(K-mu)-(X-mu)]f_X(x)dx\
&=int_K^infty(K-mu)f_X(x)dx-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)frac1(2pi psi^2)^1/2e^-frac(x-mu)^22psi^2dx\
&=(K-mu)(1-Phi(K))-int_frac(K-mu)^22psi^2^inftypsi^2frac1(2pi psi^2)^1/2e^-zdz\
&=(K-mu)(1-Phi(K))+fracpsisqrt2pie^-z|_frac(K-mu)^22psi^2^infty\
&=(K-mu)(1-Phi(K))-fracpsisqrt2pie^-frac(K-mu)^22psi^2
endalign
$$
where I have used the change of variables $z=frac(x-mu)^22psi^2$.
However, when I check my answer numerically, I see that the integral is not correct. Here is working Python code to check:
import numpy as np
from scipy.stats import norm
from scipy.special import erf
# simulation parameters for checking answers numerically
trials = 100000
K = 0.25
mu = np.pi/2
psi = 3.0
simulated = np.mean([np.max([K-x, 0])
for x in np.random.normal(mu, psi, trials)])
numerical = (K-mu)*(1-norm.cdf(K, mu, psi)) - np.exp(-((K-mu)**2)/(2*psi**2))*psi/np.sqrt(2*np.pi)
print(simulated)
print(numerical)
This gives:
simulated = 0.6448298784565597
numerical = -1.9713797586737627
What is the issue with my integration?
statistics numerical-methods normal-distribution expected-value
New contributor
$endgroup$
Given $Xpropto N(mu,psi^2)$ and $K$ constant, find $E(maxK-X,0)$.
My attempt:
$$
beginalign
E(maxK-X,0)\
&=int_-infty^inftymaxK-x,0f_X(x)dx\
&=int_K^infty(K-x)f_X(x)dx\
&=int_K^infty[(K-mu)-(X-mu)]f_X(x)dx\
&=int_K^infty(K-mu)f_X(x)dx-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)f_X(x)dx\
&=(K-mu)(1-Phi(K))-int_K^infty(x-mu)frac1(2pi psi^2)^1/2e^-frac(x-mu)^22psi^2dx\
&=(K-mu)(1-Phi(K))-int_frac(K-mu)^22psi^2^inftypsi^2frac1(2pi psi^2)^1/2e^-zdz\
&=(K-mu)(1-Phi(K))+fracpsisqrt2pie^-z|_frac(K-mu)^22psi^2^infty\
&=(K-mu)(1-Phi(K))-fracpsisqrt2pie^-frac(K-mu)^22psi^2
endalign
$$
where I have used the change of variables $z=frac(x-mu)^22psi^2$.
However, when I check my answer numerically, I see that the integral is not correct. Here is working Python code to check:
import numpy as np
from scipy.stats import norm
from scipy.special import erf
# simulation parameters for checking answers numerically
trials = 100000
K = 0.25
mu = np.pi/2
psi = 3.0
simulated = np.mean([np.max([K-x, 0])
for x in np.random.normal(mu, psi, trials)])
numerical = (K-mu)*(1-norm.cdf(K, mu, psi)) - np.exp(-((K-mu)**2)/(2*psi**2))*psi/np.sqrt(2*np.pi)
print(simulated)
print(numerical)
This gives:
simulated = 0.6448298784565597
numerical = -1.9713797586737627
What is the issue with my integration?
statistics numerical-methods normal-distribution expected-value
statistics numerical-methods normal-distribution expected-value
New contributor
New contributor
edited 14 hours ago
Rodrigo de Azevedo
13.1k41960
13.1k41960
New contributor
asked 16 hours ago
Nick SettjeNick Settje
1112
1112
New contributor
New contributor
4
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago
add a comment |
4
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago
4
4
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Nick Settje is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140018%2fexpectation-of-maximum-of-translated-gaussian%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Nick Settje is a new contributor. Be nice, and check out our Code of Conduct.
Nick Settje is a new contributor. Be nice, and check out our Code of Conduct.
Nick Settje is a new contributor. Be nice, and check out our Code of Conduct.
Nick Settje is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3140018%2fexpectation-of-maximum-of-translated-gaussian%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
There is a mistake in the second line. $max K-X,0=K-x$ if $x leq K$.
$endgroup$
– Kavi Rama Murthy
16 hours ago