Principal value of Carlson elliptic integral $R_C$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Integral with 4 branch pointsHow can I integrate a Bessel function divided by a “shifted” value?Proving Legendres Relation for elliptic curvesHow can $int_a^b f(x)dx $ exist if either $f(a)$ or $f(b)$ does not exist?Understanding principal value integralPrincipal value of complete elliptic integral of third kindShould $p.v.int_0^1 xcot(pi x)dx$ converge?A curious integralExpansion of Complete Elliptic Integral of the First Kind about the Branch PointHow can I determine all the values of p where an integral is improper?Reducing this principal value integral to something I can evaluate numerically

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

What causes the vertical darker bands in my photo?

What is the meaning of the new sigil in Game of Thrones Season 8 intro?

Can a USB port passively 'listen only'?

How come Sam didn't become Lord of Horn Hill?

Why is my conclusion inconsistent with the van't Hoff equation?

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together

What would be the ideal power source for a cybernetic eye?

How to deal with a team lead who never gives me credit?

What does this icon in iOS Stardew Valley mean?

Why did the rest of the Eastern Bloc not invade Yugoslavia?

What is the logic behind the Maharil's explanation of why we don't say שעשה ניסים on Pesach?

How to find all the available tools in mac terminal?

3 doors, three guards, one stone

Generate an RGB colour grid

Is it fair for a professor to grade us on the possession of past papers?

Error "illegal generic type for instanceof" when using local classes

Should I discuss the type of campaign with my players?

Dating a Former Employee

51k Euros annually for a family of 4 in Berlin: Is it enough?

Why light coming from distant stars is not discreet?

When do you get frequent flier miles - when you buy, or when you fly?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How does debian/ubuntu knows a package has a updated version



Principal value of Carlson elliptic integral $R_C$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Integral with 4 branch pointsHow can I integrate a Bessel function divided by a “shifted” value?Proving Legendres Relation for elliptic curvesHow can $int_a^b f(x)dx $ exist if either $f(a)$ or $f(b)$ does not exist?Understanding principal value integralPrincipal value of complete elliptic integral of third kindShould $p.v.int_0^1 xcot(pi x)dx$ converge?A curious integralExpansion of Complete Elliptic Integral of the First Kind about the Branch PointHow can I determine all the values of p where an integral is improper?Reducing this principal value integral to something I can evaluate numerically










2












$begingroup$


$$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
$R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
$$
PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
$$




Q: How can we prove the above equality?




The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    $$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
    $R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
    $$
    PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
    $$




    Q: How can we prove the above equality?




    The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.










    share|cite|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$


      $$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
      $R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
      $$
      PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
      $$




      Q: How can we prove the above equality?




      The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.










      share|cite|improve this question











      $endgroup$




      $$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
      $R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
      $$
      PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
      $$




      Q: How can we prove the above equality?




      The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.







      improper-integrals special-functions elliptic-integrals cauchy-principal-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 26 at 15:32









      J. M. is a poor mathematician

      61.3k5152291




      61.3k5152291










      asked Sep 25 '16 at 2:38









      Jack's wasted lifeJack's wasted life

      7,45111430




      7,45111430




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.



          1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:



          $$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$



          Then we want to show that, for $y lt 0$:



          $$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$



          2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:



          $$oint_C dz fraclogz(z-y)sqrtz+x $$



          where $C$ is the following contour:



          enter image description here



          Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.



          I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:



          $$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$



          By Cauchy's theorem, the contour integral is zero. Simplifying, we get that



          $$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$



          or



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$



          Note that the second and fourth terms cancel. Thus,



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$



          The latter integral is



          $$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$



          Thus, we have shown that




          $$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            how did you plot the contour ?
            $endgroup$
            – reuns
            Oct 3 '16 at 16:46










          • $begingroup$
            @user1952009: Mathematica.
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:46






          • 1




            $begingroup$
            @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 1




            $begingroup$
            -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 2




            $begingroup$
            Commissioner Gordon saves the day yayyyy!!
            $endgroup$
            – Jack's wasted life
            Oct 3 '16 at 16:56


















          5












          $begingroup$

          $$newcommandPVoperatornamePV
          beginalign
          R(x,y)
          &=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
          &=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
          &=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
          &=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
          &=sqrtfracu-vu,R(u,v)tag8\[9pt]
          &=sqrtfracxx-y,R(x-y,-y)tag9
          endalign
          $$
          Explanation:

          $(2)$: substitute $zmapsto(x-y)z^2-x$

          $(3)$: partial fractions

          $(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals

          $(5)$: Principal Value is easy with an odd function

          $(6)$: evaluate integral

          $(7)$: $u=x-y$ and $v=-y$

          $(8)$: apply $(6)$ to $(7)$

          $(9)$: undo the substitution in $(7)$



          Substituting $ymapsto-y$ in $(9)$ yields
          $$
          R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
          $$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Just read this now; very nice!
            $endgroup$
            – J. M. is a poor mathematician
            Mar 26 at 15:33











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1940298%2fprincipal-value-of-carlson-elliptic-integral-r-c%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.



          1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:



          $$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$



          Then we want to show that, for $y lt 0$:



          $$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$



          2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:



          $$oint_C dz fraclogz(z-y)sqrtz+x $$



          where $C$ is the following contour:



          enter image description here



          Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.



          I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:



          $$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$



          By Cauchy's theorem, the contour integral is zero. Simplifying, we get that



          $$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$



          or



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$



          Note that the second and fourth terms cancel. Thus,



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$



          The latter integral is



          $$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$



          Thus, we have shown that




          $$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            how did you plot the contour ?
            $endgroup$
            – reuns
            Oct 3 '16 at 16:46










          • $begingroup$
            @user1952009: Mathematica.
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:46






          • 1




            $begingroup$
            @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 1




            $begingroup$
            -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 2




            $begingroup$
            Commissioner Gordon saves the day yayyyy!!
            $endgroup$
            – Jack's wasted life
            Oct 3 '16 at 16:56















          3












          $begingroup$

          One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.



          1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:



          $$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$



          Then we want to show that, for $y lt 0$:



          $$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$



          2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:



          $$oint_C dz fraclogz(z-y)sqrtz+x $$



          where $C$ is the following contour:



          enter image description here



          Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.



          I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:



          $$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$



          By Cauchy's theorem, the contour integral is zero. Simplifying, we get that



          $$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$



          or



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$



          Note that the second and fourth terms cancel. Thus,



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$



          The latter integral is



          $$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$



          Thus, we have shown that




          $$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$







          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            how did you plot the contour ?
            $endgroup$
            – reuns
            Oct 3 '16 at 16:46










          • $begingroup$
            @user1952009: Mathematica.
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:46






          • 1




            $begingroup$
            @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 1




            $begingroup$
            -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 2




            $begingroup$
            Commissioner Gordon saves the day yayyyy!!
            $endgroup$
            – Jack's wasted life
            Oct 3 '16 at 16:56













          3












          3








          3





          $begingroup$

          One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.



          1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:



          $$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$



          Then we want to show that, for $y lt 0$:



          $$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$



          2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:



          $$oint_C dz fraclogz(z-y)sqrtz+x $$



          where $C$ is the following contour:



          enter image description here



          Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.



          I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:



          $$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$



          By Cauchy's theorem, the contour integral is zero. Simplifying, we get that



          $$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$



          or



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$



          Note that the second and fourth terms cancel. Thus,



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$



          The latter integral is



          $$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$



          Thus, we have shown that




          $$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$







          share|cite|improve this answer











          $endgroup$



          One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.



          1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:



          $$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$



          Then we want to show that, for $y lt 0$:



          $$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$



          2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:



          $$oint_C dz fraclogz(z-y)sqrtz+x $$



          where $C$ is the following contour:



          enter image description here



          Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.



          I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:



          $$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$



          By Cauchy's theorem, the contour integral is zero. Simplifying, we get that



          $$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$



          or



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$



          Note that the second and fourth terms cancel. Thus,



          $$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$



          The latter integral is



          $$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$



          Thus, we have shown that




          $$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Oct 4 '16 at 11:55

























          answered Oct 3 '16 at 16:37









          Ron GordonRon Gordon

          123k14156267




          123k14156267











          • $begingroup$
            how did you plot the contour ?
            $endgroup$
            – reuns
            Oct 3 '16 at 16:46










          • $begingroup$
            @user1952009: Mathematica.
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:46






          • 1




            $begingroup$
            @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 1




            $begingroup$
            -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 2




            $begingroup$
            Commissioner Gordon saves the day yayyyy!!
            $endgroup$
            – Jack's wasted life
            Oct 3 '16 at 16:56
















          • $begingroup$
            how did you plot the contour ?
            $endgroup$
            – reuns
            Oct 3 '16 at 16:46










          • $begingroup$
            @user1952009: Mathematica.
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:46






          • 1




            $begingroup$
            @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 1




            $begingroup$
            -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
            $endgroup$
            – Ron Gordon
            Oct 3 '16 at 16:48






          • 2




            $begingroup$
            Commissioner Gordon saves the day yayyyy!!
            $endgroup$
            – Jack's wasted life
            Oct 3 '16 at 16:56















          $begingroup$
          how did you plot the contour ?
          $endgroup$
          – reuns
          Oct 3 '16 at 16:46




          $begingroup$
          how did you plot the contour ?
          $endgroup$
          – reuns
          Oct 3 '16 at 16:46












          $begingroup$
          @user1952009: Mathematica.
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:46




          $begingroup$
          @user1952009: Mathematica.
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:46




          1




          1




          $begingroup$
          @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:48




          $begingroup$
          @user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:48




          1




          1




          $begingroup$
          -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:48




          $begingroup$
          -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
          $endgroup$
          – Ron Gordon
          Oct 3 '16 at 16:48




          2




          2




          $begingroup$
          Commissioner Gordon saves the day yayyyy!!
          $endgroup$
          – Jack's wasted life
          Oct 3 '16 at 16:56




          $begingroup$
          Commissioner Gordon saves the day yayyyy!!
          $endgroup$
          – Jack's wasted life
          Oct 3 '16 at 16:56











          5












          $begingroup$

          $$newcommandPVoperatornamePV
          beginalign
          R(x,y)
          &=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
          &=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
          &=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
          &=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
          &=sqrtfracu-vu,R(u,v)tag8\[9pt]
          &=sqrtfracxx-y,R(x-y,-y)tag9
          endalign
          $$
          Explanation:

          $(2)$: substitute $zmapsto(x-y)z^2-x$

          $(3)$: partial fractions

          $(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals

          $(5)$: Principal Value is easy with an odd function

          $(6)$: evaluate integral

          $(7)$: $u=x-y$ and $v=-y$

          $(8)$: apply $(6)$ to $(7)$

          $(9)$: undo the substitution in $(7)$



          Substituting $ymapsto-y$ in $(9)$ yields
          $$
          R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
          $$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Just read this now; very nice!
            $endgroup$
            – J. M. is a poor mathematician
            Mar 26 at 15:33















          5












          $begingroup$

          $$newcommandPVoperatornamePV
          beginalign
          R(x,y)
          &=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
          &=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
          &=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
          &=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
          &=sqrtfracu-vu,R(u,v)tag8\[9pt]
          &=sqrtfracxx-y,R(x-y,-y)tag9
          endalign
          $$
          Explanation:

          $(2)$: substitute $zmapsto(x-y)z^2-x$

          $(3)$: partial fractions

          $(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals

          $(5)$: Principal Value is easy with an odd function

          $(6)$: evaluate integral

          $(7)$: $u=x-y$ and $v=-y$

          $(8)$: apply $(6)$ to $(7)$

          $(9)$: undo the substitution in $(7)$



          Substituting $ymapsto-y$ in $(9)$ yields
          $$
          R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
          $$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Just read this now; very nice!
            $endgroup$
            – J. M. is a poor mathematician
            Mar 26 at 15:33













          5












          5








          5





          $begingroup$

          $$newcommandPVoperatornamePV
          beginalign
          R(x,y)
          &=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
          &=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
          &=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
          &=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
          &=sqrtfracu-vu,R(u,v)tag8\[9pt]
          &=sqrtfracxx-y,R(x-y,-y)tag9
          endalign
          $$
          Explanation:

          $(2)$: substitute $zmapsto(x-y)z^2-x$

          $(3)$: partial fractions

          $(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals

          $(5)$: Principal Value is easy with an odd function

          $(6)$: evaluate integral

          $(7)$: $u=x-y$ and $v=-y$

          $(8)$: apply $(6)$ to $(7)$

          $(9)$: undo the substitution in $(7)$



          Substituting $ymapsto-y$ in $(9)$ yields
          $$
          R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
          $$






          share|cite|improve this answer









          $endgroup$



          $$newcommandPVoperatornamePV
          beginalign
          R(x,y)
          &=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
          &=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
          &=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
          &=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
          &=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
          &=sqrtfracu-vu,R(u,v)tag8\[9pt]
          &=sqrtfracxx-y,R(x-y,-y)tag9
          endalign
          $$
          Explanation:

          $(2)$: substitute $zmapsto(x-y)z^2-x$

          $(3)$: partial fractions

          $(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals

          $(5)$: Principal Value is easy with an odd function

          $(6)$: evaluate integral

          $(7)$: $u=x-y$ and $v=-y$

          $(8)$: apply $(6)$ to $(7)$

          $(9)$: undo the substitution in $(7)$



          Substituting $ymapsto-y$ in $(9)$ yields
          $$
          R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 4 '16 at 11:47









          robjohnrobjohn

          271k27316643




          271k27316643











          • $begingroup$
            Just read this now; very nice!
            $endgroup$
            – J. M. is a poor mathematician
            Mar 26 at 15:33
















          • $begingroup$
            Just read this now; very nice!
            $endgroup$
            – J. M. is a poor mathematician
            Mar 26 at 15:33















          $begingroup$
          Just read this now; very nice!
          $endgroup$
          – J. M. is a poor mathematician
          Mar 26 at 15:33




          $begingroup$
          Just read this now; very nice!
          $endgroup$
          – J. M. is a poor mathematician
          Mar 26 at 15:33

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1940298%2fprincipal-value-of-carlson-elliptic-integral-r-c%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

          random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

          Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye