Principal value of Carlson elliptic integral $R_C$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Integral with 4 branch pointsHow can I integrate a Bessel function divided by a “shifted” value?Proving Legendres Relation for elliptic curvesHow can $int_a^b f(x)dx $ exist if either $f(a)$ or $f(b)$ does not exist?Understanding principal value integralPrincipal value of complete elliptic integral of third kindShould $p.v.int_0^1 xcot(pi x)dx$ converge?A curious integralExpansion of Complete Elliptic Integral of the First Kind about the Branch PointHow can I determine all the values of p where an integral is improper?Reducing this principal value integral to something I can evaluate numerically
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
What causes the vertical darker bands in my photo?
What is the meaning of the new sigil in Game of Thrones Season 8 intro?
Can a USB port passively 'listen only'?
How come Sam didn't become Lord of Horn Hill?
Why is my conclusion inconsistent with the van't Hoff equation?
Sci-Fi book where patients in a coma ward all live in a subconscious world linked together
What would be the ideal power source for a cybernetic eye?
How to deal with a team lead who never gives me credit?
What does this icon in iOS Stardew Valley mean?
Why did the rest of the Eastern Bloc not invade Yugoslavia?
What is the logic behind the Maharil's explanation of why we don't say שעשה ניסים on Pesach?
How to find all the available tools in mac terminal?
3 doors, three guards, one stone
Generate an RGB colour grid
Is it fair for a professor to grade us on the possession of past papers?
Error "illegal generic type for instanceof" when using local classes
Should I discuss the type of campaign with my players?
Dating a Former Employee
51k Euros annually for a family of 4 in Berlin: Is it enough?
Why light coming from distant stars is not discreet?
When do you get frequent flier miles - when you buy, or when you fly?
Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?
How does debian/ubuntu knows a package has a updated version
Principal value of Carlson elliptic integral $R_C$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Integral with 4 branch pointsHow can I integrate a Bessel function divided by a “shifted” value?Proving Legendres Relation for elliptic curvesHow can $int_a^b f(x)dx $ exist if either $f(a)$ or $f(b)$ does not exist?Understanding principal value integralPrincipal value of complete elliptic integral of third kindShould $p.v.int_0^1 xcot(pi x)dx$ converge?A curious integralExpansion of Complete Elliptic Integral of the First Kind about the Branch PointHow can I determine all the values of p where an integral is improper?Reducing this principal value integral to something I can evaluate numerically
$begingroup$
$$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
$R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
$$
PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
$$
Q: How can we prove the above equality?
The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.
improper-integrals special-functions elliptic-integrals cauchy-principal-value
$endgroup$
add a comment |
$begingroup$
$$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
$R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
$$
PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
$$
Q: How can we prove the above equality?
The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.
improper-integrals special-functions elliptic-integrals cauchy-principal-value
$endgroup$
add a comment |
$begingroup$
$$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
$R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
$$
PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
$$
Q: How can we prove the above equality?
The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.
improper-integrals special-functions elliptic-integrals cauchy-principal-value
$endgroup$
$$R_C(x,y)=1over2int_0^inftyfracdt(t+y)sqrtt+x,quad(xge0)$$
$R_C$ has a singularity in the denominator when $y$ is negative. Wikipedia says in that case $R_C$ can be evaluated as follows
$$
PV;R_C(x,-y)=sqrtfracxx+yR_C(x+y,y),quad(y>0)
$$
Q: How can we prove the above equality?
The integrand has an easily computable anti-derivative but I don't know if it's useful in this context.
improper-integrals special-functions elliptic-integrals cauchy-principal-value
improper-integrals special-functions elliptic-integrals cauchy-principal-value
edited Mar 26 at 15:32
J. M. is a poor mathematician
61.3k5152291
61.3k5152291
asked Sep 25 '16 at 2:38
Jack's wasted lifeJack's wasted life
7,45111430
7,45111430
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.
1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:
$$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$
Then we want to show that, for $y lt 0$:
$$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$
2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:
$$oint_C dz fraclogz(z-y)sqrtz+x $$
where $C$ is the following contour:
Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.
I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:
$$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$
By Cauchy's theorem, the contour integral is zero. Simplifying, we get that
$$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$
or
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$
Note that the second and fourth terms cancel. Thus,
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$
The latter integral is
$$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$
Thus, we have shown that
$$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$
$endgroup$
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
|
show 4 more comments
$begingroup$
$$newcommandPVoperatornamePV
beginalign
R(x,y)
&=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
&=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
&=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
&=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
&=sqrtfracu-vu,R(u,v)tag8\[9pt]
&=sqrtfracxx-y,R(x-y,-y)tag9
endalign
$$
Explanation:
$(2)$: substitute $zmapsto(x-y)z^2-x$
$(3)$: partial fractions
$(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals
$(5)$: Principal Value is easy with an odd function
$(6)$: evaluate integral
$(7)$: $u=x-y$ and $v=-y$
$(8)$: apply $(6)$ to $(7)$
$(9)$: undo the substitution in $(7)$
Substituting $ymapsto-y$ in $(9)$ yields
$$
R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
$$
$endgroup$
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1940298%2fprincipal-value-of-carlson-elliptic-integral-r-c%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.
1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:
$$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$
Then we want to show that, for $y lt 0$:
$$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$
2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:
$$oint_C dz fraclogz(z-y)sqrtz+x $$
where $C$ is the following contour:
Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.
I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:
$$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$
By Cauchy's theorem, the contour integral is zero. Simplifying, we get that
$$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$
or
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$
Note that the second and fourth terms cancel. Thus,
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$
The latter integral is
$$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$
Thus, we have shown that
$$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$
$endgroup$
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
|
show 4 more comments
$begingroup$
One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.
1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:
$$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$
Then we want to show that, for $y lt 0$:
$$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$
2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:
$$oint_C dz fraclogz(z-y)sqrtz+x $$
where $C$ is the following contour:
Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.
I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:
$$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$
By Cauchy's theorem, the contour integral is zero. Simplifying, we get that
$$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$
or
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$
Note that the second and fourth terms cancel. Thus,
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$
The latter integral is
$$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$
Thus, we have shown that
$$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$
$endgroup$
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
|
show 4 more comments
$begingroup$
One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.
1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:
$$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$
Then we want to show that, for $y lt 0$:
$$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$
2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:
$$oint_C dz fraclogz(z-y)sqrtz+x $$
where $C$ is the following contour:
Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.
I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:
$$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$
By Cauchy's theorem, the contour integral is zero. Simplifying, we get that
$$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$
or
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$
Note that the second and fourth terms cancel. Thus,
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$
The latter integral is
$$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$
Thus, we have shown that
$$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$
$endgroup$
One proves this identity by doing two things: 1) evaluating the integral for $y gt 0$ and then 2) setting up the Cauchy PV integral in the complex plane.
1) The evaluation of the Carson integral is straightforward. Let's consider the case $x gt y$:
$$beginalignR_C(x,y) &= frac12 int_0^infty fracdt(t+y) sqrtt+x \ &=int_sqrtx^infty fracdtt^2-(x-y)\ &= frac1sqrtx-y operatornamearctanhleft (fracsqrtx-ysqrtx right )endalign $$
Then we want to show that, for $y lt 0$:
$$PV left [R_C(x,-y)right ] = sqrtfracxx+y R_C(x+y,y) = sqrtfracxx+y frac1sqrtx operatornamearctanhleft (fracsqrtxsqrtx+y right ) = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right )$$
2) We will now proceed along those lines. Consider the following contour integral in the complex plane for $x$ and $y gt 0$:
$$oint_C dz fraclogz(z-y)sqrtz+x $$
where $C$ is the following contour:
Note that $C$ deals with the asymmetric integral over $[0,infty)$ by introducing a log with a branch cut along the positive real axis. The contour $C$ avoids the pole at $z=y$ by introducing semicircular detours about that pole of radii $epsilon$. $C$ also goes around the branch cut of the square root along the negative real axis.
I will take the limit as $epsilon to 0$ and the radius of the large circle $R to infty$. The result is, for the contour integral in this limit:
$$PV int_0^infty dt fraclogt(t-y) sqrtt+x -PV int_0^infty dt fraclogt+i 2 pi(t-y) sqrtt+x - i pi fraclogysqrtx+y - i pi fraclogy+i 2 pisqrtx+y \ +i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x $$
By Cauchy's theorem, the contour integral is zero. Simplifying, we get that
$$-i 2 pi PV int_0^infty fracdt(t-y) sqrtt+x = i 2 pi fraclogysqrtx+y +i 2 pi fraci pisqrtx+y - i 2 int_x^infty dt fraclogt+i pi(t+y) sqrtt-x$$
or
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y - fraci pi2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y + i int_0^infty fracdtt^2+x+y endalign $$
Note that the second and fourth terms cancel. Thus,
$$beginalignPV left [R_C(x,-y) right ] &= -fraclogy2 sqrtx+y + frac1pi int_0^infty dt fraclog(t^2+x)t^2+x+y endalign $$
The latter integral is
$$int_0^infty dt fraclog(t^2+x)t^2+x+y = fracpisqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) + fracpi logy2 sqrtx+y $$
Thus, we have shown that
$$PV left [R_C(x,-y) right ] = frac1sqrtx+y operatornamearctanhleft (fracsqrtxsqrtx+y right ) = sqrtfracxx+y R_C(x+y,y) $$
edited Oct 4 '16 at 11:55
answered Oct 3 '16 at 16:37
Ron GordonRon Gordon
123k14156267
123k14156267
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
|
show 4 more comments
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
how did you plot the contour ?
$endgroup$
– reuns
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
$begingroup$
@user1952009: Mathematica.
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:46
1
1
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
$begingroup$
@user1952009: code: Graphics[Circle[0, 0, 3, ArcSin[0.2/3], Pi - ArcSin[0.2/3]], Circle[0, 0, 3, Pi + ArcSin[0.2/3], 2 Pi - ArcSin[0.2/3]], Circle[0, 0, 0.3, ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, ArcSin[2/3], Pi - ArcSin[2/3]], Circle[1.3, 0, 0.3, Pi + ArcSin[2/3], 2 Pi - ArcSin[2/3]], Circle[-1.7, 0, 0.3, -Pi + ArcSin[2/3], Pi - ArcSin[2/3]], Line[3 Cos[Pi - ArcSin[0.2/3]], 0.2,
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
1
1
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
$begingroup$
-1.7 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[3 Cos[Pi - ArcSin[0.2/3]], -0.2, -1.7 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[0.3 Cos[ArcSin[2/3]], 0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], 0.2], Line[0.3 Cos[ArcSin[2/3]], -0.2, 1.3 + 0.3 Cos[Pi - ArcSin[2/3]], -0.2], Line[3 Cos[ArcSin[0.2/3]], 0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], 0.2], Line[3 Cos[ArcSin[0.2/3]], -0.2, 1.3 + 0.3 Cos[ArcSin[2/3]], -0.2], Axes -> True, Ticks -> False]
$endgroup$
– Ron Gordon
Oct 3 '16 at 16:48
2
2
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
$begingroup$
Commissioner Gordon saves the day yayyyy!!
$endgroup$
– Jack's wasted life
Oct 3 '16 at 16:56
|
show 4 more comments
$begingroup$
$$newcommandPVoperatornamePV
beginalign
R(x,y)
&=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
&=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
&=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
&=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
&=sqrtfracu-vu,R(u,v)tag8\[9pt]
&=sqrtfracxx-y,R(x-y,-y)tag9
endalign
$$
Explanation:
$(2)$: substitute $zmapsto(x-y)z^2-x$
$(3)$: partial fractions
$(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals
$(5)$: Principal Value is easy with an odd function
$(6)$: evaluate integral
$(7)$: $u=x-y$ and $v=-y$
$(8)$: apply $(6)$ to $(7)$
$(9)$: undo the substitution in $(7)$
Substituting $ymapsto-y$ in $(9)$ yields
$$
R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
$$
$endgroup$
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
add a comment |
$begingroup$
$$newcommandPVoperatornamePV
beginalign
R(x,y)
&=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
&=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
&=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
&=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
&=sqrtfracu-vu,R(u,v)tag8\[9pt]
&=sqrtfracxx-y,R(x-y,-y)tag9
endalign
$$
Explanation:
$(2)$: substitute $zmapsto(x-y)z^2-x$
$(3)$: partial fractions
$(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals
$(5)$: Principal Value is easy with an odd function
$(6)$: evaluate integral
$(7)$: $u=x-y$ and $v=-y$
$(8)$: apply $(6)$ to $(7)$
$(9)$: undo the substitution in $(7)$
Substituting $ymapsto-y$ in $(9)$ yields
$$
R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
$$
$endgroup$
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
add a comment |
$begingroup$
$$newcommandPVoperatornamePV
beginalign
R(x,y)
&=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
&=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
&=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
&=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
&=sqrtfracu-vu,R(u,v)tag8\[9pt]
&=sqrtfracxx-y,R(x-y,-y)tag9
endalign
$$
Explanation:
$(2)$: substitute $zmapsto(x-y)z^2-x$
$(3)$: partial fractions
$(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals
$(5)$: Principal Value is easy with an odd function
$(6)$: evaluate integral
$(7)$: $u=x-y$ and $v=-y$
$(8)$: apply $(6)$ to $(7)$
$(9)$: undo the substitution in $(7)$
Substituting $ymapsto-y$ in $(9)$ yields
$$
R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
$$
$endgroup$
$$newcommandPVoperatornamePV
beginalign
R(x,y)
&=frac12,PV!!int_0^inftyfracmathrmdz(z+y)sqrtz+xtag1\[6pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyfrac2,mathrmdzz^2-1tag2\[3pt]
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y^inftyleft(frac1z-1-frac1z+1right)mathrmdztag3\
&=frac12sqrtx-y,PV!!int_sqrtfracxx-y,-1^sqrtfracxx-y,+1fracmathrmdzztag4\
&=frac12sqrtx-yint_left^sqrtfracxx-y,+1fracmathrmdzztag5\
&=bbox[5px,border:2px solid #C0A000]tag6\[6pt]
&=sqrtfracu-vufrac12sqrtu-vlogleft|fracsqrtu-v+sqrtusqrtu-v-sqrturight|tag7\[6pt]
&=sqrtfracu-vu,R(u,v)tag8\[9pt]
&=sqrtfracxx-y,R(x-y,-y)tag9
endalign
$$
Explanation:
$(2)$: substitute $zmapsto(x-y)z^2-x$
$(3)$: partial fractions
$(4)$: substitute $zmapsto z+1$ and $zmapsto z-1$ and subtract integrals
$(5)$: Principal Value is easy with an odd function
$(6)$: evaluate integral
$(7)$: $u=x-y$ and $v=-y$
$(8)$: apply $(6)$ to $(7)$
$(9)$: undo the substitution in $(7)$
Substituting $ymapsto-y$ in $(9)$ yields
$$
R(x,-y)=sqrtfracxx+y,R(x+y,y)tag10
$$
answered Oct 4 '16 at 11:47
robjohn♦robjohn
271k27316643
271k27316643
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
add a comment |
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
$begingroup$
Just read this now; very nice!
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 15:33
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1940298%2fprincipal-value-of-carlson-elliptic-integral-r-c%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown