If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluate using Riemann sums $int_0^a cos xmathrmdx$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$A reduction formula for $int_0^1 x^n/sqrt9 - x^2,mathrm dx$Evaluate : $lim_ktoinftyint_0^infty 1over1+kx^10dx$Evaluate $lim_ntoinftynI_n$ with $I_n=int_0^1fracx^nx^2+3x+2dx$Fundamental Theorem of Calculus for $limlimits_xto 0fracint_0^x(x-t)sin t^2 dtxsin^3x$Evaluate a limit involving a definite integralComputing $limlimits_n to infty int_0^fracpi2frac(sin(x))^n1-sin(x),mathrmdx $Compute the limit $lim_ntoinfty I_n(a)$ where $ I_n(a) :=int_0^a fracx^nx^n+1,mathrmdx, nin N$.Evaluate $limlimits_n to infty int_1-epsilon^1 ln(1+x+…+x^n-1)dx$
Is it fair for a professor to grade us on the possession of past papers?
Why is "Consequences inflicted." not a sentence?
Should I use a zero-interest credit card for a large one-time purchase?
How discoverable are IPv6 addresses and AAAA names by potential attackers?
Can a USB port passively 'listen only'?
Generate an RGB colour grid
What causes the vertical darker bands in my photo?
Why do we bend a book to keep it straight?
Using et al. for a last / senior author rather than for a first author
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
What would be the ideal power source for a cybernetic eye?
Why are there no cargo aircraft with "flying wing" design?
Can a non-EU citizen traveling with me come with me through the EU passport line?
Apollo command module space walk?
What's the meaning of 間時肆拾貳 at a car parking sign
At the end of Thor: Ragnarok why don't the Asgardians turn and head for the Bifrost as per their original plan?
In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?
What does the "x" in "x86" represent?
Should I discuss the type of campaign with my players?
Why did the IBM 650 use bi-quinary?
Can I cast Passwall to drop an enemy into a 20-foot pit?
Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?
51k Euros annually for a family of 4 in Berlin: Is it enough?
What's the purpose of writing one's academic biography in the third person?
If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluate using Riemann sums $int_0^a cos xmathrmdx$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$A reduction formula for $int_0^1 x^n/sqrt9 - x^2,mathrm dx$Evaluate : $lim_ktoinftyint_0^infty 1over1+kx^10dx$Evaluate $lim_ntoinftynI_n$ with $I_n=int_0^1fracx^nx^2+3x+2dx$Fundamental Theorem of Calculus for $limlimits_xto 0fracint_0^x(x-t)sin t^2 dtxsin^3x$Evaluate a limit involving a definite integralComputing $limlimits_n to infty int_0^fracpi2frac(sin(x))^n1-sin(x),mathrmdx $Compute the limit $lim_ntoinfty I_n(a)$ where $ I_n(a) :=int_0^a fracx^nx^n+1,mathrmdx, nin N$.Evaluate $limlimits_n to infty int_1-epsilon^1 ln(1+x+…+x^n-1)dx$
$begingroup$
If
$$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?
I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.
I want a proof without the Arzelà-Ascoli theorem or dominated convergence.
calculus limits definite-integrals
$endgroup$
add a comment |
$begingroup$
If
$$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?
I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.
I want a proof without the Arzelà-Ascoli theorem or dominated convergence.
calculus limits definite-integrals
$endgroup$
add a comment |
$begingroup$
If
$$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?
I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.
I want a proof without the Arzelà-Ascoli theorem or dominated convergence.
calculus limits definite-integrals
$endgroup$
If
$$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?
I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.
I want a proof without the Arzelà-Ascoli theorem or dominated convergence.
calculus limits definite-integrals
calculus limits definite-integrals
edited Mar 26 at 17:24
Alex Ortiz
11.5k21442
11.5k21442
asked Mar 26 at 14:51
GaboruGaboru
4768
4768
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.
Notice that by the product rule,
beginalign
fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
&= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
endalign
For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
beginalign
int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
Hence,
beginalign
nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
By the triangle inequality and the fundamental theorem of calculus again,
beginalign*
bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
&leqslant int_0^1 x^n,mathrm dx \
&= frac1n+1 to 0,quadtextas $ntoinfty$.
endalign*
Thus,
$$
lim_ntoinftynI_n = frac12020.
$$
$endgroup$
add a comment |
$begingroup$
For fixed $deltain(0,1)$,
$$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
Note
$$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
and
$$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
But
$$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
From (1),(2) and (3), one has
$$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
Letting $ntoinfty$ gives
$$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
Letting $deltato1^-$ gives
$$ liminf nI_n=limsup nI_n=frac12020 $$
or
$$ lim_ntoinftynI_n=frac12020.$$
$endgroup$
add a comment |
$begingroup$
Let $J_n=n I_n$, notice that when you use integration by parts, you would get
$$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$
Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.
$endgroup$
add a comment |
$begingroup$
We can write
beginalign
nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
&= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
&=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
&=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
endalign
Therefore,
beginalign
int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
&= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
&= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
endalign
Finally,
beginalign
lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
&= sum_k=0^infty (-1)^kover (2019)^k+1\
&= 1over 2020.
endalign
$endgroup$
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
lim_n to inftybracksnint_0^1pars1 - x^n over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftybracksnint_0^1exponlnpars1 - x over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftyparsnint_0^inftyexpo-nx over
0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
\[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
endalign
Laplace's Method.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163280%2fif-i-n-int-01-fracxnx22019-mathrm-dx-evaluate-lim-limits-n-to%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.
Notice that by the product rule,
beginalign
fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
&= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
endalign
For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
beginalign
int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
Hence,
beginalign
nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
By the triangle inequality and the fundamental theorem of calculus again,
beginalign*
bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
&leqslant int_0^1 x^n,mathrm dx \
&= frac1n+1 to 0,quadtextas $ntoinfty$.
endalign*
Thus,
$$
lim_ntoinftynI_n = frac12020.
$$
$endgroup$
add a comment |
$begingroup$
The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.
Notice that by the product rule,
beginalign
fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
&= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
endalign
For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
beginalign
int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
Hence,
beginalign
nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
By the triangle inequality and the fundamental theorem of calculus again,
beginalign*
bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
&leqslant int_0^1 x^n,mathrm dx \
&= frac1n+1 to 0,quadtextas $ntoinfty$.
endalign*
Thus,
$$
lim_ntoinftynI_n = frac12020.
$$
$endgroup$
add a comment |
$begingroup$
The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.
Notice that by the product rule,
beginalign
fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
&= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
endalign
For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
beginalign
int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
Hence,
beginalign
nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
By the triangle inequality and the fundamental theorem of calculus again,
beginalign*
bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
&leqslant int_0^1 x^n,mathrm dx \
&= frac1n+1 to 0,quadtextas $ntoinfty$.
endalign*
Thus,
$$
lim_ntoinftynI_n = frac12020.
$$
$endgroup$
The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.
Notice that by the product rule,
beginalign
fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
&= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
endalign
For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
beginalign
int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
Hence,
beginalign
nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
endalign
By the triangle inequality and the fundamental theorem of calculus again,
beginalign*
bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
&leqslant int_0^1 x^n,mathrm dx \
&= frac1n+1 to 0,quadtextas $ntoinfty$.
endalign*
Thus,
$$
lim_ntoinftynI_n = frac12020.
$$
edited Mar 27 at 4:08
answered Mar 26 at 16:53
Alex OrtizAlex Ortiz
11.5k21442
11.5k21442
add a comment |
add a comment |
$begingroup$
For fixed $deltain(0,1)$,
$$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
Note
$$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
and
$$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
But
$$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
From (1),(2) and (3), one has
$$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
Letting $ntoinfty$ gives
$$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
Letting $deltato1^-$ gives
$$ liminf nI_n=limsup nI_n=frac12020 $$
or
$$ lim_ntoinftynI_n=frac12020.$$
$endgroup$
add a comment |
$begingroup$
For fixed $deltain(0,1)$,
$$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
Note
$$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
and
$$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
But
$$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
From (1),(2) and (3), one has
$$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
Letting $ntoinfty$ gives
$$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
Letting $deltato1^-$ gives
$$ liminf nI_n=limsup nI_n=frac12020 $$
or
$$ lim_ntoinftynI_n=frac12020.$$
$endgroup$
add a comment |
$begingroup$
For fixed $deltain(0,1)$,
$$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
Note
$$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
and
$$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
But
$$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
From (1),(2) and (3), one has
$$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
Letting $ntoinfty$ gives
$$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
Letting $deltato1^-$ gives
$$ liminf nI_n=limsup nI_n=frac12020 $$
or
$$ lim_ntoinftynI_n=frac12020.$$
$endgroup$
For fixed $deltain(0,1)$,
$$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
Note
$$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
and
$$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
But
$$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
From (1),(2) and (3), one has
$$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
Letting $ntoinfty$ gives
$$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
Letting $deltato1^-$ gives
$$ liminf nI_n=limsup nI_n=frac12020 $$
or
$$ lim_ntoinftynI_n=frac12020.$$
edited Mar 26 at 16:30
answered Mar 26 at 16:15
xpaulxpaul
23.5k24655
23.5k24655
add a comment |
add a comment |
$begingroup$
Let $J_n=n I_n$, notice that when you use integration by parts, you would get
$$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$
Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.
$endgroup$
add a comment |
$begingroup$
Let $J_n=n I_n$, notice that when you use integration by parts, you would get
$$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$
Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.
$endgroup$
add a comment |
$begingroup$
Let $J_n=n I_n$, notice that when you use integration by parts, you would get
$$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$
Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.
$endgroup$
Let $J_n=n I_n$, notice that when you use integration by parts, you would get
$$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$
Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.
edited Mar 26 at 17:43
answered Mar 26 at 16:42
aziiriaziiri
2,50311430
2,50311430
add a comment |
add a comment |
$begingroup$
We can write
beginalign
nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
&= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
&=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
&=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
endalign
Therefore,
beginalign
int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
&= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
&= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
endalign
Finally,
beginalign
lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
&= sum_k=0^infty (-1)^kover (2019)^k+1\
&= 1over 2020.
endalign
$endgroup$
add a comment |
$begingroup$
We can write
beginalign
nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
&= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
&=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
&=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
endalign
Therefore,
beginalign
int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
&= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
&= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
endalign
Finally,
beginalign
lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
&= sum_k=0^infty (-1)^kover (2019)^k+1\
&= 1over 2020.
endalign
$endgroup$
add a comment |
$begingroup$
We can write
beginalign
nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
&= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
&=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
&=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
endalign
Therefore,
beginalign
int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
&= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
&= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
endalign
Finally,
beginalign
lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
&= sum_k=0^infty (-1)^kover (2019)^k+1\
&= 1over 2020.
endalign
$endgroup$
We can write
beginalign
nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
&= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
&=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
&=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
endalign
Therefore,
beginalign
int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
&= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
&= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
endalign
Finally,
beginalign
lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
&= sum_k=0^infty (-1)^kover (2019)^k+1\
&= 1over 2020.
endalign
edited Mar 26 at 20:55
Alex Ortiz
11.5k21442
11.5k21442
answered Mar 26 at 17:29
Mostafa AyazMostafa Ayaz
18.1k31040
18.1k31040
add a comment |
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
lim_n to inftybracksnint_0^1pars1 - x^n over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftybracksnint_0^1exponlnpars1 - x over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftyparsnint_0^inftyexpo-nx over
0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
\[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
endalign
Laplace's Method.
$endgroup$
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
lim_n to inftybracksnint_0^1pars1 - x^n over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftybracksnint_0^1exponlnpars1 - x over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftyparsnint_0^inftyexpo-nx over
0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
\[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
endalign
Laplace's Method.
$endgroup$
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
lim_n to inftybracksnint_0^1pars1 - x^n over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftybracksnint_0^1exponlnpars1 - x over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftyparsnint_0^inftyexpo-nx over
0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
\[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
endalign
Laplace's Method.
$endgroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
&bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
lim_n to inftybracksnint_0^1pars1 - x^n over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftybracksnint_0^1exponlnpars1 - x over
x^2 -2x + 2020,dd x
\[5mm] = &
lim_n to inftyparsnint_0^inftyexpo-nx over
0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
\[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
endalign
Laplace's Method.
edited Mar 29 at 1:57
Alex Ortiz
11.5k21442
11.5k21442
answered Mar 27 at 19:15
Felix MarinFelix Marin
69k7110147
69k7110147
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163280%2fif-i-n-int-01-fracxnx22019-mathrm-dx-evaluate-lim-limits-n-to%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown