If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluate using Riemann sums $int_0^a cos xmathrmdx$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$A reduction formula for $int_0^1 x^n/sqrt9 - x^2,mathrm dx$Evaluate : $lim_ktoinftyint_0^infty 1over1+kx^10dx$Evaluate $lim_ntoinftynI_n$ with $I_n=int_0^1fracx^nx^2+3x+2dx$Fundamental Theorem of Calculus for $limlimits_xto 0fracint_0^x(x-t)sin t^2 dtxsin^3x$Evaluate a limit involving a definite integralComputing $limlimits_n to infty int_0^fracpi2frac(sin(x))^n1-sin(x),mathrmdx $Compute the limit $lim_ntoinfty I_n(a)$ where $ I_n(a) :=int_0^a fracx^nx^n+1,mathrmdx, nin N$.Evaluate $limlimits_n to infty int_1-epsilon^1 ln(1+x+…+x^n-1)dx$

Is it fair for a professor to grade us on the possession of past papers?

Why is "Consequences inflicted." not a sentence?

Should I use a zero-interest credit card for a large one-time purchase?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

Can a USB port passively 'listen only'?

Generate an RGB colour grid

What causes the vertical darker bands in my photo?

Why do we bend a book to keep it straight?

Using et al. for a last / senior author rather than for a first author

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

What would be the ideal power source for a cybernetic eye?

Why are there no cargo aircraft with "flying wing" design?

Can a non-EU citizen traveling with me come with me through the EU passport line?

Apollo command module space walk?

What's the meaning of 間時肆拾貳 at a car parking sign

At the end of Thor: Ragnarok why don't the Asgardians turn and head for the Bifrost as per their original plan?

In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?

What does the "x" in "x86" represent?

Should I discuss the type of campaign with my players?

Why did the IBM 650 use bi-quinary?

Can I cast Passwall to drop an enemy into a 20-foot pit?

Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?

51k Euros annually for a family of 4 in Berlin: Is it enough?

What's the purpose of writing one's academic biography in the third person?



If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluate using Riemann sums $int_0^a cos xmathrmdx$Computation of $lim_n rightarrow infty n(int_0^infty frac11+x^4+x^n mathrmdm(x)-C)$A reduction formula for $int_0^1 x^n/sqrt9 - x^2,mathrm dx$Evaluate : $lim_ktoinftyint_0^infty 1over1+kx^10dx$Evaluate $lim_ntoinftynI_n$ with $I_n=int_0^1fracx^nx^2+3x+2dx$Fundamental Theorem of Calculus for $limlimits_xto 0fracint_0^x(x-t)sin t^2 dtxsin^3x$Evaluate a limit involving a definite integralComputing $limlimits_n to infty int_0^fracpi2frac(sin(x))^n1-sin(x),mathrmdx $Compute the limit $lim_ntoinfty I_n(a)$ where $ I_n(a) :=int_0^a fracx^nx^n+1,mathrmdx, nin N$.Evaluate $limlimits_n to infty int_1-epsilon^1 ln(1+x+…+x^n-1)dx$










4












$begingroup$


If
$$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?



I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.



I want a proof without the Arzelà-Ascoli theorem or dominated convergence.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    If
    $$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?



    I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.



    I want a proof without the Arzelà-Ascoli theorem or dominated convergence.










    share|cite|improve this question











    $endgroup$














      4












      4








      4





      $begingroup$


      If
      $$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?



      I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.



      I want a proof without the Arzelà-Ascoli theorem or dominated convergence.










      share|cite|improve this question











      $endgroup$




      If
      $$I_n=int_0^1 fracx^nx^2+2019,mathrm dx,$$ find $lim_nto infty nI_n$. Can somebody help me, please?



      I've only found that $$frac12020 le nI_n le frac12019$$ knowing that $x^2 in [0,1]$, but it doesn't help to evaluate the limit.



      I want a proof without the Arzelà-Ascoli theorem or dominated convergence.







      calculus limits definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 26 at 17:24









      Alex Ortiz

      11.5k21442




      11.5k21442










      asked Mar 26 at 14:51









      GaboruGaboru

      4768




      4768




















          5 Answers
          5






          active

          oldest

          votes


















          7












          $begingroup$

          The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.



          Notice that by the product rule,
          beginalign
          fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
          &= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
          endalign

          For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
          beginalign
          int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
          leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
          endalign

          Hence,
          beginalign
          nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
          endalign

          By the triangle inequality and the fundamental theorem of calculus again,
          beginalign*
          bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
          &leqslant int_0^1 x^n,mathrm dx \
          &= frac1n+1 to 0,quadtextas $ntoinfty$.
          endalign*

          Thus,
          $$
          lim_ntoinftynI_n = frac12020.
          $$






          share|cite|improve this answer











          $endgroup$




















            6












            $begingroup$

            For fixed $deltain(0,1)$,
            $$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
            Note
            $$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
            and
            $$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
            But
            $$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
            From (1),(2) and (3), one has
            $$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
            Letting $ntoinfty$ gives
            $$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
            Letting $deltato1^-$ gives
            $$ liminf nI_n=limsup nI_n=frac12020 $$
            or
            $$ lim_ntoinftynI_n=frac12020.$$






            share|cite|improve this answer











            $endgroup$




















              3












              $begingroup$

              Let $J_n=n I_n$, notice that when you use integration by parts, you would get
              $$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$



              Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.






              share|cite|improve this answer











              $endgroup$




















                2












                $begingroup$

                We can write
                beginalign
                nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
                &= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
                &=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
                &=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
                endalign



                Therefore,



                beginalign
                int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
                &= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
                &= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
                endalign



                Finally,



                beginalign
                lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
                &= sum_k=0^infty (-1)^kover (2019)^k+1\
                &= 1over 2020.
                endalign






                share|cite|improve this answer











                $endgroup$




















                  1












                  $begingroup$

                  $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                  newcommandbraces[1]leftlbrace,#1,rightrbrace
                  newcommandbracks[1]leftlbrack,#1,rightrbrack
                  newcommandddmathrmd
                  newcommandds[1]displaystyle#1
                  newcommandexpo[1],mathrme^#1,
                  newcommandicmathrmi
                  newcommandmc[1]mathcal#1
                  newcommandmrm[1]mathrm#1
                  newcommandpars[1]left(,#1,right)
                  newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                  newcommandroot[2][],sqrt[#1],#2,,
                  newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                  newcommandverts[1]leftvert,#1,rightvert$

                  beginalign
                  &bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
                  x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
                  lim_n to inftybracksnint_0^1pars1 - x^n over
                  x^2 -2x + 2020,dd x
                  \[5mm] = &
                  lim_n to inftybracksnint_0^1exponlnpars1 - x over
                  x^2 -2x + 2020,dd x
                  \[5mm] = &
                  lim_n to inftyparsnint_0^inftyexpo-nx over
                  0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
                  \[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
                  endalign




                  Laplace's Method.







                  share|cite|improve this answer











                  $endgroup$













                    Your Answer








                    StackExchange.ready(function()
                    var channelOptions =
                    tags: "".split(" "),
                    id: "69"
                    ;
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function()
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled)
                    StackExchange.using("snippets", function()
                    createEditor();
                    );

                    else
                    createEditor();

                    );

                    function createEditor()
                    StackExchange.prepareEditor(
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader:
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    ,
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    );



                    );













                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163280%2fif-i-n-int-01-fracxnx22019-mathrm-dx-evaluate-lim-limits-n-to%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown

























                    5 Answers
                    5






                    active

                    oldest

                    votes








                    5 Answers
                    5






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    7












                    $begingroup$

                    The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.



                    Notice that by the product rule,
                    beginalign
                    fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
                    &= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
                    endalign

                    For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
                    beginalign
                    int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
                    leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                    endalign

                    Hence,
                    beginalign
                    nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                    endalign

                    By the triangle inequality and the fundamental theorem of calculus again,
                    beginalign*
                    bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
                    &leqslant int_0^1 x^n,mathrm dx \
                    &= frac1n+1 to 0,quadtextas $ntoinfty$.
                    endalign*

                    Thus,
                    $$
                    lim_ntoinftynI_n = frac12020.
                    $$






                    share|cite|improve this answer











                    $endgroup$

















                      7












                      $begingroup$

                      The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.



                      Notice that by the product rule,
                      beginalign
                      fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
                      &= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
                      endalign

                      For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
                      beginalign
                      int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
                      leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                      endalign

                      Hence,
                      beginalign
                      nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                      endalign

                      By the triangle inequality and the fundamental theorem of calculus again,
                      beginalign*
                      bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
                      &leqslant int_0^1 x^n,mathrm dx \
                      &= frac1n+1 to 0,quadtextas $ntoinfty$.
                      endalign*

                      Thus,
                      $$
                      lim_ntoinftynI_n = frac12020.
                      $$






                      share|cite|improve this answer











                      $endgroup$















                        7












                        7








                        7





                        $begingroup$

                        The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.



                        Notice that by the product rule,
                        beginalign
                        fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
                        &= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
                        endalign

                        For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
                        beginalign
                        int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
                        leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                        endalign

                        Hence,
                        beginalign
                        nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                        endalign

                        By the triangle inequality and the fundamental theorem of calculus again,
                        beginalign*
                        bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
                        &leqslant int_0^1 x^n,mathrm dx \
                        &= frac1n+1 to 0,quadtextas $ntoinfty$.
                        endalign*

                        Thus,
                        $$
                        lim_ntoinftynI_n = frac12020.
                        $$






                        share|cite|improve this answer











                        $endgroup$



                        The term $nx^n$ in the numerator of our integral is almost a derivative: $(x^n)' = nx^n-1$, so this suggests the following approach.



                        Notice that by the product rule,
                        beginalign
                        fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg) &= nx^n-1cdotfracxx^2+2019 + x^ncdotfracmathrm dmathrm dxbigg(fracxx^2+2019bigg) \
                        &= fracnx^nx^2+2019 + x^ncdot frac-x^2+2019(x^2+2019)^2
                        endalign

                        For $0 leqslant x leqslant 1$, the second term above is bounded above in absolute value by $|x|^n = x^n$. Integrating and applying the fundamental theorem of calculus gives
                        beginalign
                        int_0^1fracmathrm dmathrm dxbigg(x^ncdot fracxx^2+2019bigg),mathrm dx &= nint_0^1fracx^nx^2+2019,mathrm dx + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx \
                        leadstoquadfrac12020 &= nI_n + int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                        endalign

                        Hence,
                        beginalign
                        nI_n = frac12020 - int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dx.
                        endalign

                        By the triangle inequality and the fundamental theorem of calculus again,
                        beginalign*
                        bigg|int_0^1 x^ncdot frac-x^2+2019(x^2+2019)^2,mathrm dxbigg| &leqslant int_0^1bigg|x^ncdot frac-x^2+2019(x^2+2019)^2bigg|,mathrm dx \
                        &leqslant int_0^1 x^n,mathrm dx \
                        &= frac1n+1 to 0,quadtextas $ntoinfty$.
                        endalign*

                        Thus,
                        $$
                        lim_ntoinftynI_n = frac12020.
                        $$







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Mar 27 at 4:08

























                        answered Mar 26 at 16:53









                        Alex OrtizAlex Ortiz

                        11.5k21442




                        11.5k21442





















                            6












                            $begingroup$

                            For fixed $deltain(0,1)$,
                            $$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
                            Note
                            $$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
                            and
                            $$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
                            But
                            $$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
                            From (1),(2) and (3), one has
                            $$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
                            Letting $ntoinfty$ gives
                            $$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
                            Letting $deltato1^-$ gives
                            $$ liminf nI_n=limsup nI_n=frac12020 $$
                            or
                            $$ lim_ntoinftynI_n=frac12020.$$






                            share|cite|improve this answer











                            $endgroup$

















                              6












                              $begingroup$

                              For fixed $deltain(0,1)$,
                              $$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
                              Note
                              $$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
                              and
                              $$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
                              But
                              $$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
                              From (1),(2) and (3), one has
                              $$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
                              Letting $ntoinfty$ gives
                              $$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
                              Letting $deltato1^-$ gives
                              $$ liminf nI_n=limsup nI_n=frac12020 $$
                              or
                              $$ lim_ntoinftynI_n=frac12020.$$






                              share|cite|improve this answer











                              $endgroup$















                                6












                                6








                                6





                                $begingroup$

                                For fixed $deltain(0,1)$,
                                $$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
                                Note
                                $$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
                                and
                                $$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
                                But
                                $$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
                                From (1),(2) and (3), one has
                                $$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
                                Letting $ntoinfty$ gives
                                $$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
                                Letting $deltato1^-$ gives
                                $$ liminf nI_n=limsup nI_n=frac12020 $$
                                or
                                $$ lim_ntoinftynI_n=frac12020.$$






                                share|cite|improve this answer











                                $endgroup$



                                For fixed $deltain(0,1)$,
                                $$ int_0^1 fracnx^nx^2+2019dx=int_0^delta fracnx^nx^2+2019dx+int_delta^1 fracnx^nx^2+2019dx. $$
                                Note
                                $$ 0leint_0^delta fracnx^nx^2+2019dxleint_0^delta nx^ndx=fracnn+1delta^n+1. tag1$$
                                and
                                $$ int_delta^1 fracnx^n2020dxleint_delta^1 fracnx^nx^2+2019dxleint_delta^1 fracnx^ndelta^2+2019dx. tag2$$
                                But
                                $$ int_delta^1 fracnx^n2020dx=frac12020fracnn+1(1-delta^n+1), int_delta^1 fracnx^ndelta^2+2019dx=frac1delta^2+2019fracnn+1(1-delta^n+1). tag3 $$
                                From (1),(2) and (3), one has
                                $$ frac12020fracnn+1(1-delta^n+1)le nI_nle fracnn+1delta^n+1+frac1delta^2+2019fracnn+1(1-delta^n+1).$$
                                Letting $ntoinfty$ gives
                                $$ frac12020leliminf nI_nlelimsup nI_nle frac1delta^2+2019.$$
                                Letting $deltato1^-$ gives
                                $$ liminf nI_n=limsup nI_n=frac12020 $$
                                or
                                $$ lim_ntoinftynI_n=frac12020.$$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Mar 26 at 16:30

























                                answered Mar 26 at 16:15









                                xpaulxpaul

                                23.5k24655




                                23.5k24655





















                                    3












                                    $begingroup$

                                    Let $J_n=n I_n$, notice that when you use integration by parts, you would get
                                    $$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$



                                    Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.






                                    share|cite|improve this answer











                                    $endgroup$

















                                      3












                                      $begingroup$

                                      Let $J_n=n I_n$, notice that when you use integration by parts, you would get
                                      $$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$



                                      Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.






                                      share|cite|improve this answer











                                      $endgroup$















                                        3












                                        3








                                        3





                                        $begingroup$

                                        Let $J_n=n I_n$, notice that when you use integration by parts, you would get
                                        $$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$



                                        Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.






                                        share|cite|improve this answer











                                        $endgroup$



                                        Let $J_n=n I_n$, notice that when you use integration by parts, you would get
                                        $$J_n=left[ fracx^n+1x^2+2019right]_0^1 -int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx= frac12020-int_0^1fracx^n(2019-x^2)(x^2+2019)^2 dx$$



                                        Now, you only have to show that the limit of the rightmost integral is zero, notice that the integrand can be Bounded by $Cx^n$.







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Mar 26 at 17:43

























                                        answered Mar 26 at 16:42









                                        aziiriaziiri

                                        2,50311430




                                        2,50311430





















                                            2












                                            $begingroup$

                                            We can write
                                            beginalign
                                            nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
                                            &= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
                                            &=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
                                            &=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
                                            endalign



                                            Therefore,



                                            beginalign
                                            int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
                                            &= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
                                            &= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
                                            endalign



                                            Finally,



                                            beginalign
                                            lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
                                            &= sum_k=0^infty (-1)^kover (2019)^k+1\
                                            &= 1over 2020.
                                            endalign






                                            share|cite|improve this answer











                                            $endgroup$

















                                              2












                                              $begingroup$

                                              We can write
                                              beginalign
                                              nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
                                              &= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
                                              &=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
                                              &=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
                                              endalign



                                              Therefore,



                                              beginalign
                                              int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
                                              &= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
                                              &= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
                                              endalign



                                              Finally,



                                              beginalign
                                              lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
                                              &= sum_k=0^infty (-1)^kover (2019)^k+1\
                                              &= 1over 2020.
                                              endalign






                                              share|cite|improve this answer











                                              $endgroup$















                                                2












                                                2








                                                2





                                                $begingroup$

                                                We can write
                                                beginalign
                                                nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
                                                &= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
                                                &=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
                                                &=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
                                                endalign



                                                Therefore,



                                                beginalign
                                                int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
                                                &= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
                                                &= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
                                                endalign



                                                Finally,



                                                beginalign
                                                lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
                                                &= sum_k=0^infty (-1)^kover (2019)^k+1\
                                                &= 1over 2020.
                                                endalign






                                                share|cite|improve this answer











                                                $endgroup$



                                                We can write
                                                beginalign
                                                nx^n over x^2+2019 &= nx^n over 2019 cdot 1over 1+x^2over 2019 \
                                                &= nx^n over 2019 cdot left(1-x^2over 2019+left[x^2over 2019right]^2-left[x^2over 2019right]^3+cdotsright) \
                                                &=nx^nover 2019cdotsum_k=0^inftyx^2k(-1)^kover (2019)^k \
                                                &=nover2019cdot sum_k=0^infty x^n+2k(-1)^kover (2019)^k.
                                                endalign



                                                Therefore,



                                                beginalign
                                                int_0^1 nx^nover x^2+2019,dx &=int_0^1 nover2019cdot sum_k=0^inftyx^n+2k(-1)^kover (2019)^kdx \
                                                &= nover2019cdotsum_k=0^infty(-1)^kover (2019)^kint_0^1 x^n+2k,dx \
                                                &= sum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1.
                                                endalign



                                                Finally,



                                                beginalign
                                                lim_nto inftyint_0^1 nx^nover x^2+2019,dx &= lim_nto inftysum_k=0^infty nover n+2k+1cdot(-1)^kover (2019)^k+1\
                                                &= sum_k=0^infty (-1)^kover (2019)^k+1\
                                                &= 1over 2020.
                                                endalign







                                                share|cite|improve this answer














                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Mar 26 at 20:55









                                                Alex Ortiz

                                                11.5k21442




                                                11.5k21442










                                                answered Mar 26 at 17:29









                                                Mostafa AyazMostafa Ayaz

                                                18.1k31040




                                                18.1k31040





















                                                    1












                                                    $begingroup$

                                                    $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                                                    newcommandbraces[1]leftlbrace,#1,rightrbrace
                                                    newcommandbracks[1]leftlbrack,#1,rightrbrack
                                                    newcommandddmathrmd
                                                    newcommandds[1]displaystyle#1
                                                    newcommandexpo[1],mathrme^#1,
                                                    newcommandicmathrmi
                                                    newcommandmc[1]mathcal#1
                                                    newcommandmrm[1]mathrm#1
                                                    newcommandpars[1]left(,#1,right)
                                                    newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                                    newcommandroot[2][],sqrt[#1],#2,,
                                                    newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                                                    newcommandverts[1]leftvert,#1,rightvert$

                                                    beginalign
                                                    &bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
                                                    x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
                                                    lim_n to inftybracksnint_0^1pars1 - x^n over
                                                    x^2 -2x + 2020,dd x
                                                    \[5mm] = &
                                                    lim_n to inftybracksnint_0^1exponlnpars1 - x over
                                                    x^2 -2x + 2020,dd x
                                                    \[5mm] = &
                                                    lim_n to inftyparsnint_0^inftyexpo-nx over
                                                    0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
                                                    \[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
                                                    endalign




                                                    Laplace's Method.







                                                    share|cite|improve this answer











                                                    $endgroup$

















                                                      1












                                                      $begingroup$

                                                      $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                                                      newcommandbraces[1]leftlbrace,#1,rightrbrace
                                                      newcommandbracks[1]leftlbrack,#1,rightrbrack
                                                      newcommandddmathrmd
                                                      newcommandds[1]displaystyle#1
                                                      newcommandexpo[1],mathrme^#1,
                                                      newcommandicmathrmi
                                                      newcommandmc[1]mathcal#1
                                                      newcommandmrm[1]mathrm#1
                                                      newcommandpars[1]left(,#1,right)
                                                      newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                                      newcommandroot[2][],sqrt[#1],#2,,
                                                      newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                                                      newcommandverts[1]leftvert,#1,rightvert$

                                                      beginalign
                                                      &bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
                                                      x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
                                                      lim_n to inftybracksnint_0^1pars1 - x^n over
                                                      x^2 -2x + 2020,dd x
                                                      \[5mm] = &
                                                      lim_n to inftybracksnint_0^1exponlnpars1 - x over
                                                      x^2 -2x + 2020,dd x
                                                      \[5mm] = &
                                                      lim_n to inftyparsnint_0^inftyexpo-nx over
                                                      0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
                                                      \[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
                                                      endalign




                                                      Laplace's Method.







                                                      share|cite|improve this answer











                                                      $endgroup$















                                                        1












                                                        1








                                                        1





                                                        $begingroup$

                                                        $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                                                        newcommandbraces[1]leftlbrace,#1,rightrbrace
                                                        newcommandbracks[1]leftlbrack,#1,rightrbrack
                                                        newcommandddmathrmd
                                                        newcommandds[1]displaystyle#1
                                                        newcommandexpo[1],mathrme^#1,
                                                        newcommandicmathrmi
                                                        newcommandmc[1]mathcal#1
                                                        newcommandmrm[1]mathrm#1
                                                        newcommandpars[1]left(,#1,right)
                                                        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                                        newcommandroot[2][],sqrt[#1],#2,,
                                                        newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                                                        newcommandverts[1]leftvert,#1,rightvert$

                                                        beginalign
                                                        &bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
                                                        x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
                                                        lim_n to inftybracksnint_0^1pars1 - x^n over
                                                        x^2 -2x + 2020,dd x
                                                        \[5mm] = &
                                                        lim_n to inftybracksnint_0^1exponlnpars1 - x over
                                                        x^2 -2x + 2020,dd x
                                                        \[5mm] = &
                                                        lim_n to inftyparsnint_0^inftyexpo-nx over
                                                        0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
                                                        \[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
                                                        endalign




                                                        Laplace's Method.







                                                        share|cite|improve this answer











                                                        $endgroup$



                                                        $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
                                                        newcommandbraces[1]leftlbrace,#1,rightrbrace
                                                        newcommandbracks[1]leftlbrack,#1,rightrbrack
                                                        newcommandddmathrmd
                                                        newcommandds[1]displaystyle#1
                                                        newcommandexpo[1],mathrme^#1,
                                                        newcommandicmathrmi
                                                        newcommandmc[1]mathcal#1
                                                        newcommandmrm[1]mathrm#1
                                                        newcommandpars[1]left(,#1,right)
                                                        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                                        newcommandroot[2][],sqrt[#1],#2,,
                                                        newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
                                                        newcommandverts[1]leftvert,#1,rightvert$

                                                        beginalign
                                                        &bbox[10px,#ffd]lim_n to inftyparsnint_0^1x^n over
                                                        x^2 + 2019,dd x,,,stackrelx mapsto 1 - x=,,,
                                                        lim_n to inftybracksnint_0^1pars1 - x^n over
                                                        x^2 -2x + 2020,dd x
                                                        \[5mm] = &
                                                        lim_n to inftybracksnint_0^1exponlnpars1 - x over
                                                        x^2 -2x + 2020,dd x
                                                        \[5mm] = &
                                                        lim_n to inftyparsnint_0^inftyexpo-nx over
                                                        0^2 -2 times 0 + 2020,dd xqquadparstextLaplace's Method
                                                        \[5mm] = & bbx1 over 2020 approx 4.9505 times 10^-4
                                                        endalign




                                                        Laplace's Method.








                                                        share|cite|improve this answer














                                                        share|cite|improve this answer



                                                        share|cite|improve this answer








                                                        edited Mar 29 at 1:57









                                                        Alex Ortiz

                                                        11.5k21442




                                                        11.5k21442










                                                        answered Mar 27 at 19:15









                                                        Felix MarinFelix Marin

                                                        69k7110147




                                                        69k7110147



























                                                            draft saved

                                                            draft discarded
















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid


                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.

                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function ()
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163280%2fif-i-n-int-01-fracxnx22019-mathrm-dx-evaluate-lim-limits-n-to%23new-answer', 'question_page');

                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                                                            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                                                            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye