Lucas number Contents Definition Extension to negative integers Relationship to Fibonacci numbers Congruence relations Lucas primes Generating series Lucas polynomials See also References External links Navigation menuThe Prime Glossary: Lucas prime"Lucas polynomials""Lucas Number""Lucas Polynomial"The Lucas NumbersLucas numbers and the Golden SectionA Lucas Number Calculator can be found here.sequence A000032 (Lucas numbers beginning at 2)ee
Fermat (22n + 1)Mersenne (2p − 1)Double Mersenne (22p−1 − 1)Wagstaff (2p + 1)/3Proth (k·2n + 1)Factorial (n! ± 1)Primorial (pn# ± 1)Euclid (pn# + 1)Pythagorean (4n + 1)Pierpont (2m·3n + 1)Quartan (x4 + y4)Solinas (2m ± 2n ± 1)Cullen (n·2n + 1)Woodall (n·2n − 1)Cuban (x3 − y3)/(x − y)Carol (2n − 1)2 − 2Kynea (2n + 1)2 − 2Leyland (xy + yx)Thabit (3·2n − 1)Williams ((b−1)·bn − 1)Mills (⌊A3n⌋)WieferichpairWall–Sun–SunWolstenholmeWilsonLuckyFortunateRamanujanPillaiRegularStrongSternSupersingular (elliptic curve)Supersingular (moonshine theory)GoodSuperHiggsHighly cototientTwin (p, p + 2)Bi-twin chain (n − 1, n + 1, 2n − 1, 2n + 1, …)Triplet (p, p + 2 or p + 4, p + 6)Quadruplet (p, p + 2, p + 6, p + 8)k−TupleCousin (p, p + 4)Sexy (p, p + 6)ChenSophie Germain (p, 2p + 1)Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)Safe (p, (p − 1)/2)Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)Balanced (consecutive p − n, p, p + n)Eisenstein primeGaussian primeProbable primeIndustrial-grade primeIllegal primeFormula for primesPrime gapAchillesPower of 2Power of 10SquareCubeFourth powerFifth powerSixth powerSeventh powerPerfect powerPowerfulPrime powerCarolHilbertIdonealKyneaLeylandLoeschianLucky numbers of EulerRepunitKnödelRieselSierpinskiLuckyCentered triangularCentered squareCentered pentagonalCentered hexagonalCentered heptagonalCentered octagonalCentered nonagonalCentered decagonalStarTriangularSquarePronicSquare triangularPentagonalHexagonalHeptagonalOctagonalNonagonalDecagonalDodecagonalCentered tetrahedralCentered cubeCentered octahedralCentered dodecahedralCentered icosahedralTetrahedralOctahedralDodecahedralIcosahedralStella octangulaSquare pyramidalPentagonal pyramidalHexagonal pyramidalHeptagonal pyramidalCentered pentachoricSquared triangularPentatopeBellCakeCatalanDedekindDelannoyEulerFuss–CatalanLazy caterer's sequenceLobbMotzkinNarayanaOrdered BellSchröderSchröder–HipparchusAlmost perfectArithmeticColossally abundantDescartesHemiperfectHighly abundantHighly compositeHyperperfectMultiply perfectPerfectPractical numberPrimitive abundantQuasiperfectRefactorableSublimeSuperabundantSuperior highly compositeSuperperfectAlmost primeCompositePrimeSemiprimeHighly cototientHighly totientNoncototientNontotientPerfect totientSparsely totientAbundantAmicableBetrothedDeficientSemiperfectSociableUntouchableWeirdEuclidFortunateBlumErdős–NicolasErdős–WoodsFriendlyGiugaHarmonic divisorRegularRoughSmoothSphenicStørmerSuper-PouletZeiselAutomorphicCyclicDigit-reassemblyDudeneyEquidigitalExtravagantFactorionFriedmanFrugalHappyHarshadKaprekarKeithLychrelMissing-digit sumNarcissisticPalindromicPandigitalParasiticPerniciousPolydivisiblePrimevalRepdigitRepunitSelfSelf-descriptiveSmarandache–WellinSmithStrictly non-palindromicStrobogrammaticSum-productTransposableTrimorphicUndulatingVampireAronson's sequenceBanPancake number
Integer sequencesFibonacci numbers
integer sequenceFrançois Édouard Anatole LucasFibonacci numbersLucas sequencesFibonacci sequencegolden ratioroundingsFibonacci integer sequenceWythoff arrayconvergesgolden ratioclosed formulagolden ratioBinet's formulaBruckman-Lucas pseudoprimesprimegenerating seriesFibonacci polynomialsFibonacci numbersLucas polynomialspolynomial sequence
The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–91), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.[1] The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.[2]
Contents
1 Definition
2 Extension to negative integers
3 Relationship to Fibonacci numbers
4 Congruence relations
5 Lucas primes
6 Generating series
7 Lucas polynomials
8 See also
9 References
10 External links
Definition
Similar to the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediate previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are L0 = 2 and L1 = 1 as opposed to the first two Fibonacci numbers F0 = 0 and F1 = 1. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.
The Lucas numbers may thus be defined as follows:
- Ln:={2if n=0;1if n=1;Ln−1+Ln−2if n>1.displaystyle L_n:=begincases2&textif n=0;\1&textif n=1;\L_n-1+L_n-2&textif n>1.\endcases
(where n belongs to the natural numbers)
The sequence of Lucas numbers is:
2,1,3,4,7,11,18,29,47,76,123,…displaystyle 2,;1,;3,;4,;7,;11,;18,;29,;47,;76,;123,;ldots ;(sequence A000032 in the OEIS).
All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.
Extension to negative integers
Using Ln−2 = Ln − Ln−1, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence:
- ..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... (terms Lndisplaystyle L_n for −5≤n≤5displaystyle -5leq nleq 5 are shown).
The formula for terms with negative indices in this sequence is
- L−n=(−1)nLn.displaystyle L_-n=(-1)^nL_n.!
Relationship to Fibonacci numbers
The Lucas numbers are related to the Fibonacci numbers by the identities
- Ln=Fn−1+Fn+1=Fn+2Fn−1=Fn+2−Fn−2displaystyle ,L_n=F_n-1+F_n+1=F_n+2F_n-1=F_n+2-F_n-2
- Lm+n=Lm+1Fn+LmFn−1displaystyle ,L_m+n=L_m+1F_n+L_mF_n-1
Ln2=5Fn2+4(−1)ndisplaystyle ,L_n^2=5F_n^2+4(-1)^n, and thus as ndisplaystyle n, approaches +∞, the ratio LnFndisplaystyle frac L_nF_n approaches 5.displaystyle sqrt 5.- F2n=LnFndisplaystyle ,F_2n=L_nF_n
- Fn+k+(−1)kFn−k=LkFndisplaystyle ,F_n+k+(-1)^kF_n-k=L_kF_n
- Fn=Ln−1+Ln+15=Ln−3+Ln+310displaystyle ,F_n=L_n-1+L_n+1 over 5=L_n-3+L_n+3 over 10
Their closed formula is given as:
- Ln=φn+(1−φ)n=φn+(−φ)−n=(1+52)n+(1−52)n,displaystyle L_n=varphi ^n+(1-varphi )^n=varphi ^n+(-varphi )^-n=left(1+sqrt 5 over 2right)^n+left(1-sqrt 5 over 2right)^n,,
where φdisplaystyle varphi is the golden ratio. Alternatively, as for n>1displaystyle n>1 the magnitude of the term (−φ)−ndisplaystyle (-varphi )^-n is less than 1/2, Lndisplaystyle L_n is the closest integer to φndisplaystyle varphi ^n or, equivalently, the integer part of φn+1/2displaystyle varphi ^n+1/2, also written as ⌊φn+1/2⌋displaystyle lfloor varphi ^n+1/2rfloor .
Combining the above with Binet's formula,
- Fn=φn−(1−φ)n5,displaystyle F_n=frac varphi ^n-(1-varphi )^nsqrt 5,,
a formula for φndisplaystyle varphi ^n is obtained:
- φn=Ln+Fn52.displaystyle varphi ^n=L_n+F_nsqrt 5 over 2,.
Congruence relations
If Fn ≥ 5 is a Fibonacci number then no Lucas number is divisible by Fn.
Ln is congruent to 1 mod n if n is prime, but some composite values of n also have this property. These are the Bruckman-Lucas pseudoprimes.
Lucas primes
A Lucas prime is a Lucas number that is prime. The first few Lucas primes are
- 2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).
For these ns are
- 0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... (sequence A001606 in the OEIS).
If Ln is prime then n is either 0, prime, or a power of 2.[3]L2m is prime for m = 1, 2, 3, and 4 and no other known values of m.
Generating series
Let
- Φ(x)=2+x+3x2+4x3+⋯=∑n=0∞Lnxndisplaystyle Phi (x)=2+x+3x^2+4x^3+cdots =sum _n=0^infty L_nx^n
be the generating series of the Lucas numbers. By a direct computation,
- Φ(x)=L0+L1x+∑n=2∞Lnxn=2+x+∑n=2∞(Ln−1+Ln−2)xn=2+x+∑n=1∞Lnxn+1+∑n=0∞Lnxn+2=2+x+x(Φ(x)−2)+x2Φ(x)displaystyle beginalignedPhi (x)&=L_0+L_1x+sum _n=2^infty L_nx^n\&=2+x+sum _n=2^infty (L_n-1+L_n-2)x^n\&=2+x+sum _n=1^infty L_nx^n+1+sum _n=0^infty L_nx^n+2\&=2+x+x(Phi (x)-2)+x^2Phi (x)endaligned
which can be rearranged as
- Φ(x)=2−x1−x−x2.displaystyle Phi (x)=frac 2-x1-x-x^2.
The partial fraction decomposition is given by
- Φ(x)=11−φx+11−ϕxdisplaystyle Phi (x)=frac 11-varphi x+frac 11-phi x
where φ=1+52displaystyle varphi =frac 1+sqrt 52 is the golden ratio and ϕ=1−52displaystyle phi =frac 1-sqrt 52 is its conjugate.
Lucas polynomials
In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials Ln(x) are a polynomial sequence derived from the Lucas numbers.
See also
- Generalizations of Fibonacci numbers
References
^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 284. ISBN 978-0-374-53563-6..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 282. ISBN 978-0-374-53563-6.
^ Chris Caldwell, "The Prime Glossary: Lucas prime" from The Prime Pages.
External links
Hazewinkel, Michiel, ed. (2001) [1994], "Lucas polynomials", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4- Weisstein, Eric W. "Lucas Number". MathWorld.
- Weisstein, Eric W. "Lucas Polynomial". MathWorld.
- "The Lucas Numbers", Dr Ron Knott
- Lucas numbers and the Golden Section
- A Lucas Number Calculator can be found here.
OEIS sequence A000032 (Lucas numbers beginning at 2)