Washington Cucurto Contents Works Translations References External links Navigation menu"Autores: Curcurto"Editorial Eloísa Cartoneracb16226880w(data)1296631150000 0000 8375 6495n20050074733816190966806604124327041243270

1973 birthsLiving peoplePeople from Quilmes20th-century Argentine poets20th-century Argentine male writersArgentine male poets21st-century Argentine poets21st-century male writers


QuilmesProvincia de Buenos AiresCharles BukowskiWilliam S. BurroughsHenry MillerEloísa Cartonerarecycled material




Santiago Vega (born in 1973 in Quilmes, Provincia de Buenos Aires), better known as Washington Cucurto, is an Argentinian writer of fiction, prose and poetry.[1] He is the self-proclaimed creator of realismo atolondrado ('headlong realism').[2] His writing shares tendencies of American authors like Charles Bukowski, William S. Burroughs and Henry Miller. Because of his subject matter and style, he is a cult author, especially among young readers. His work deals with negritude, poverty, homosexuality, and other fringe cultures. In 2002 he founded Eloísa Cartonera, an extremely successful non-profit publishing house specializing in handmade and affordable books from recycled materials.[3]




Contents





  • 1 Works


  • 2 Translations


  • 3 References


  • 4 External links




Works


  • Zelarayán, 1996, (poetry)

  • La máquina de hacer paraguayitos, 1999, (poetry)

  • Veinte pungas contra un pasajero, 2003, (poetry)

  • Hatuchay, 2005, (poetry)

  • Como un paraguayo ebrio y celoso de su hermana, 2005, (poetry)

  • Upepeté. Noticias del Paraguay, poetry, (2009)

  • El tractor, poetry, (2009)

  • Poeta en Nueva York, poetry, (2010)

  • Macanas, poetry, (2009, with pseudonym Humberto Anachuri)

  • El Hombre polar regresa a Stuttgart, poetry, (2010)

  • Cosa de negros, novella (2003),

  • Noches vacías, cumbiela (2003)

  • Panambí, cumbiela (2003),

  • Fer, cumbiela (2004),

  • La luna en tus manos, story (2004),

  • Las aventuras del Sr. Maíz, story (2005),

  • Hasta quitarle Panamá a los yanquis, novel (2005),

  • El amor es mucho más que una novela de 500 páginas, novella (2008)

  • El curandero del amor, novella (2006),

  • 1810. La revolución vivida por los negros, historical novel (2008),

  • Idalina, historia de una mujer sudamericana, novella (2009),

  • El Rey de la cumbia contra los fucking Estados Unidos de América, story (2010),

  • Pulgas y cucarachas, story (2010)

  • Sexibondi, novella (2011)


Translations


Translations exist in English, German, French and (Brazilian) Portuguese:



  • Some Dollars (Collection), by Jordan Lee Schnee


  • Die Maschine die kleine Paraguayerinnen macht, by Timo Berger


  • Schuhe aus Leinen, by Timo Berger

  • Coisas de Negros


  • Zelarayán, by Geneviève Orssaud


References




  1. ^ "Autores: Curcurto" (in Spanish). Interzona Editora. Retrieved 20 August 2010..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ http://www.letralia.com/185/entrevistas02.htm


  3. ^ http://wordswithoutborders.org/contributor/washington-cucurto




External links



  • Editorial Eloísa Cartonera, Eloísa Cartonera Publishing House







Popular posts from this blog

Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

Sum infinite sum for a complex variable not in the integers The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Convergence of the infinite product $prod_n = 1^infty fracz - alpha_nz - beta_n$Suppose $sum_k=-infty^inftya_kz^k$ and $sum_-infty^inftyb_kz^k$ converge to $1/sin(pi z)$. Find $b_k-a_k$.Laurent series of $ 1over (z - i) $Laurent series for $z^2 e^1/z$ at $z = infty$Write $sumlimits_n=0^infty e^-xn^3$ in the form $sumlimits_n=-infty^infty a_nx^n$Help needed on laurent series for a complex functionShow that $sum_-infty^infty (-1)^nexp(nz-frac12(n+frac12)^2omega)$ converges and is entireΑn entire function as an infinite sum of entire functionsClassify singularities in the extended complex planeFinding the laurent series around z = 0