cup product in cohomology ring of a suspensionLet $X = Sigma Y = Y wedge S^1$, cup product $tildeH^p(X) otimes tildeH^q(X) to tildeH^p+q(X)$ is the zero homomorphism?Triviality of relative cup product $H^2times H^2to H^4$ for spaces embeddable to $Bbb R^4$confusion about cup product in cohomology ringSuspension of a product - tricky homotopy equivalenceWhat map of ring spectra corresponds to a product in cohomology, especially the $cup$-product.Cup product on torusEasier proof about suspension of a manifoldSuspension of a CW complexhomology of suspensionThe property of suspensionCup product and suspensionCup Product: Why do we need to “consider cohomology with coefficients in a ring R”?
What will be the benefits of Brexit?
In Star Trek IV, why did the Bounty go back to a time when whales were already rare?
What is the opposite of 'gravitas'?
Is there a problem with hiding "forgot password" until it's needed?
The most efficient algorithm to find all possible integer pairs which sum to a given integer
For airliners, what prevents wing strikes on landing in bad weather?
Can the electrostatic force be infinite in magnitude?
What do you call the infoboxes with text and sometimes images on the side of a page we find in textbooks?
Can I Retrieve Email Addresses from BCC?
Simple recursive Sudoku solver
Meta programming: Declare a new struct on the fly
Books on the History of math research at European universities
What does 사자 in this picture means?
Indicating multiple different modes of speech (fantasy language or telepathy)
Should a half Jewish man be discouraged from marrying a Jewess?
What if somebody invests in my application?
Who must act to prevent Brexit on March 29th?
Simple image editor tool to draw a simple box/rectangle in an existing image
Should my PhD thesis be submitted under my legal name?
Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)
Greatest common substring
Can a malicious addon access internet history and such in chrome/firefox?
Can somebody explain Brexit in a few child-proof sentences?
Why are on-board computers allowed to change controls without notifying the pilots?
cup product in cohomology ring of a suspension
Let $X = Sigma Y = Y wedge S^1$, cup product $tildeH^p(X) otimes tildeH^q(X) to tildeH^p+q(X)$ is the zero homomorphism?Triviality of relative cup product $H^2times H^2to H^4$ for spaces embeddable to $Bbb R^4$confusion about cup product in cohomology ringSuspension of a product - tricky homotopy equivalenceWhat map of ring spectra corresponds to a product in cohomology, especially the $cup$-product.Cup product on torusEasier proof about suspension of a manifoldSuspension of a CW complexhomology of suspensionThe property of suspensionCup product and suspensionCup Product: Why do we need to “consider cohomology with coefficients in a ring R”?
$begingroup$
Let $X$ be a CW-complex. Let $Sigma$ be suspension. Let $R$ be a commutative ring. Is the cup product of
$$
H^*(Sigma X;R)$$
trivial? How to prove? Where can I find the result?
algebraic-topology homology-cohomology homotopy-theory geometric-topology cw-complexes
$endgroup$
add a comment |
$begingroup$
Let $X$ be a CW-complex. Let $Sigma$ be suspension. Let $R$ be a commutative ring. Is the cup product of
$$
H^*(Sigma X;R)$$
trivial? How to prove? Where can I find the result?
algebraic-topology homology-cohomology homotopy-theory geometric-topology cw-complexes
$endgroup$
add a comment |
$begingroup$
Let $X$ be a CW-complex. Let $Sigma$ be suspension. Let $R$ be a commutative ring. Is the cup product of
$$
H^*(Sigma X;R)$$
trivial? How to prove? Where can I find the result?
algebraic-topology homology-cohomology homotopy-theory geometric-topology cw-complexes
$endgroup$
Let $X$ be a CW-complex. Let $Sigma$ be suspension. Let $R$ be a commutative ring. Is the cup product of
$$
H^*(Sigma X;R)$$
trivial? How to prove? Where can I find the result?
algebraic-topology homology-cohomology homotopy-theory geometric-topology cw-complexes
algebraic-topology homology-cohomology homotopy-theory geometric-topology cw-complexes
asked May 26 '15 at 1:44
ShiquanShiquan
3,70411237
3,70411237
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes. Actually there is a more general result. If $X=bigcup_i=1^n A_i$ where each subspace $A_i$ is contractible, then the product of any $n$ elements in $H^*(X)$ vanishes. Since $Sigma X$ is a union of two cones, each of which is contractible, the result follows.
To establish the general result, simply note that $H^*(X)cong H^*(X, A_i)$ as $A_i$ is contractible, and there is a cup product map begineqnarrayH^*(X, A_1)times cdots times H^*(X, A_n)to H^*(X, bigcup_i=1^n A_i)=H^*(X, X)=0endeqnarray
$endgroup$
add a comment |
$begingroup$
The answer depends on which homology theory you are using.
The statement fails for singular cohomology.
However there is a fairly easy way to show that the cup product is trivial on reduced cohomology $tildeH,^bullet(Sigma X)=H^bullet(Sigma X,textpt)$.
Write $Sigma X=textCone_+(X)cuptextCone_-(X)$ and let $iota:textptlongrightarrowtextCone(X)$ be the inclusion map. We get the following commutative diagram
$requireAMScd$
beginCD
H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt) @>smile>> H^p+q(Sigma X,textpt)\
@AH^p(iota)otimes H^q(iota)AA @AAH^p+q(iota)A\
H^p(Sigma X,textCone_+(X))otimes H^q(Sigma X,textCone_-(X)) @>>smile> H^p+q(Sigma X,Sigma X)
endCD
Now note that $H^bullet(iota):H^bullet(Sigma X,textCone(X))longrightarrow H^bullet(Sigma X,textpt)$ is an isomorphism because $textCone(X)$ is contractible.
Therefore we have found a factorisation of $asmile b=H^p+q(iota)left(H^p(iota)^-1(a)smile H^q(iota)^-1(b)right)$ over $H^p+q(Sigma X,Sigma X)cong0$, hence $asmile b=0$ for any $aotimes bin H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt)$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1298938%2fcup-product-in-cohomology-ring-of-a-suspension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes. Actually there is a more general result. If $X=bigcup_i=1^n A_i$ where each subspace $A_i$ is contractible, then the product of any $n$ elements in $H^*(X)$ vanishes. Since $Sigma X$ is a union of two cones, each of which is contractible, the result follows.
To establish the general result, simply note that $H^*(X)cong H^*(X, A_i)$ as $A_i$ is contractible, and there is a cup product map begineqnarrayH^*(X, A_1)times cdots times H^*(X, A_n)to H^*(X, bigcup_i=1^n A_i)=H^*(X, X)=0endeqnarray
$endgroup$
add a comment |
$begingroup$
Yes. Actually there is a more general result. If $X=bigcup_i=1^n A_i$ where each subspace $A_i$ is contractible, then the product of any $n$ elements in $H^*(X)$ vanishes. Since $Sigma X$ is a union of two cones, each of which is contractible, the result follows.
To establish the general result, simply note that $H^*(X)cong H^*(X, A_i)$ as $A_i$ is contractible, and there is a cup product map begineqnarrayH^*(X, A_1)times cdots times H^*(X, A_n)to H^*(X, bigcup_i=1^n A_i)=H^*(X, X)=0endeqnarray
$endgroup$
add a comment |
$begingroup$
Yes. Actually there is a more general result. If $X=bigcup_i=1^n A_i$ where each subspace $A_i$ is contractible, then the product of any $n$ elements in $H^*(X)$ vanishes. Since $Sigma X$ is a union of two cones, each of which is contractible, the result follows.
To establish the general result, simply note that $H^*(X)cong H^*(X, A_i)$ as $A_i$ is contractible, and there is a cup product map begineqnarrayH^*(X, A_1)times cdots times H^*(X, A_n)to H^*(X, bigcup_i=1^n A_i)=H^*(X, X)=0endeqnarray
$endgroup$
Yes. Actually there is a more general result. If $X=bigcup_i=1^n A_i$ where each subspace $A_i$ is contractible, then the product of any $n$ elements in $H^*(X)$ vanishes. Since $Sigma X$ is a union of two cones, each of which is contractible, the result follows.
To establish the general result, simply note that $H^*(X)cong H^*(X, A_i)$ as $A_i$ is contractible, and there is a cup product map begineqnarrayH^*(X, A_1)times cdots times H^*(X, A_n)to H^*(X, bigcup_i=1^n A_i)=H^*(X, X)=0endeqnarray
edited May 26 '15 at 3:29
answered May 26 '15 at 3:24
Alex FokAlex Fok
3,866818
3,866818
add a comment |
add a comment |
$begingroup$
The answer depends on which homology theory you are using.
The statement fails for singular cohomology.
However there is a fairly easy way to show that the cup product is trivial on reduced cohomology $tildeH,^bullet(Sigma X)=H^bullet(Sigma X,textpt)$.
Write $Sigma X=textCone_+(X)cuptextCone_-(X)$ and let $iota:textptlongrightarrowtextCone(X)$ be the inclusion map. We get the following commutative diagram
$requireAMScd$
beginCD
H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt) @>smile>> H^p+q(Sigma X,textpt)\
@AH^p(iota)otimes H^q(iota)AA @AAH^p+q(iota)A\
H^p(Sigma X,textCone_+(X))otimes H^q(Sigma X,textCone_-(X)) @>>smile> H^p+q(Sigma X,Sigma X)
endCD
Now note that $H^bullet(iota):H^bullet(Sigma X,textCone(X))longrightarrow H^bullet(Sigma X,textpt)$ is an isomorphism because $textCone(X)$ is contractible.
Therefore we have found a factorisation of $asmile b=H^p+q(iota)left(H^p(iota)^-1(a)smile H^q(iota)^-1(b)right)$ over $H^p+q(Sigma X,Sigma X)cong0$, hence $asmile b=0$ for any $aotimes bin H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt)$.
$endgroup$
add a comment |
$begingroup$
The answer depends on which homology theory you are using.
The statement fails for singular cohomology.
However there is a fairly easy way to show that the cup product is trivial on reduced cohomology $tildeH,^bullet(Sigma X)=H^bullet(Sigma X,textpt)$.
Write $Sigma X=textCone_+(X)cuptextCone_-(X)$ and let $iota:textptlongrightarrowtextCone(X)$ be the inclusion map. We get the following commutative diagram
$requireAMScd$
beginCD
H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt) @>smile>> H^p+q(Sigma X,textpt)\
@AH^p(iota)otimes H^q(iota)AA @AAH^p+q(iota)A\
H^p(Sigma X,textCone_+(X))otimes H^q(Sigma X,textCone_-(X)) @>>smile> H^p+q(Sigma X,Sigma X)
endCD
Now note that $H^bullet(iota):H^bullet(Sigma X,textCone(X))longrightarrow H^bullet(Sigma X,textpt)$ is an isomorphism because $textCone(X)$ is contractible.
Therefore we have found a factorisation of $asmile b=H^p+q(iota)left(H^p(iota)^-1(a)smile H^q(iota)^-1(b)right)$ over $H^p+q(Sigma X,Sigma X)cong0$, hence $asmile b=0$ for any $aotimes bin H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt)$.
$endgroup$
add a comment |
$begingroup$
The answer depends on which homology theory you are using.
The statement fails for singular cohomology.
However there is a fairly easy way to show that the cup product is trivial on reduced cohomology $tildeH,^bullet(Sigma X)=H^bullet(Sigma X,textpt)$.
Write $Sigma X=textCone_+(X)cuptextCone_-(X)$ and let $iota:textptlongrightarrowtextCone(X)$ be the inclusion map. We get the following commutative diagram
$requireAMScd$
beginCD
H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt) @>smile>> H^p+q(Sigma X,textpt)\
@AH^p(iota)otimes H^q(iota)AA @AAH^p+q(iota)A\
H^p(Sigma X,textCone_+(X))otimes H^q(Sigma X,textCone_-(X)) @>>smile> H^p+q(Sigma X,Sigma X)
endCD
Now note that $H^bullet(iota):H^bullet(Sigma X,textCone(X))longrightarrow H^bullet(Sigma X,textpt)$ is an isomorphism because $textCone(X)$ is contractible.
Therefore we have found a factorisation of $asmile b=H^p+q(iota)left(H^p(iota)^-1(a)smile H^q(iota)^-1(b)right)$ over $H^p+q(Sigma X,Sigma X)cong0$, hence $asmile b=0$ for any $aotimes bin H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt)$.
$endgroup$
The answer depends on which homology theory you are using.
The statement fails for singular cohomology.
However there is a fairly easy way to show that the cup product is trivial on reduced cohomology $tildeH,^bullet(Sigma X)=H^bullet(Sigma X,textpt)$.
Write $Sigma X=textCone_+(X)cuptextCone_-(X)$ and let $iota:textptlongrightarrowtextCone(X)$ be the inclusion map. We get the following commutative diagram
$requireAMScd$
beginCD
H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt) @>smile>> H^p+q(Sigma X,textpt)\
@AH^p(iota)otimes H^q(iota)AA @AAH^p+q(iota)A\
H^p(Sigma X,textCone_+(X))otimes H^q(Sigma X,textCone_-(X)) @>>smile> H^p+q(Sigma X,Sigma X)
endCD
Now note that $H^bullet(iota):H^bullet(Sigma X,textCone(X))longrightarrow H^bullet(Sigma X,textpt)$ is an isomorphism because $textCone(X)$ is contractible.
Therefore we have found a factorisation of $asmile b=H^p+q(iota)left(H^p(iota)^-1(a)smile H^q(iota)^-1(b)right)$ over $H^p+q(Sigma X,Sigma X)cong0$, hence $asmile b=0$ for any $aotimes bin H^p(Sigma X,textpt)otimes H^q(Sigma X,textpt)$.
answered Mar 16 at 19:47
LilalasLilalas
54
54
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1298938%2fcup-product-in-cohomology-ring-of-a-suspension%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown