Trig Subsitution When There's No Square RootStruggling with an integral with trig substitutionDid I solve this integral correctly? (trig substitution)What is $int frac1sqrt25y^2-10y-3dy$Using trig substitution, how do you solve an integral when the leading coefficient under the radical isn't 1?How do you solve for bounds when performing trig substitution and knowing solving the trig functions yields multiple correct values of $theta$?Evalute $intfracx^5(36x^2+1)^3/2dx$ by trig sub?Integration question with trig subSolving $intfracsqrt4+xx, text dx$Definite integral of $y=sqrt(16-x^2)$Integral $intfracsqrt4x^2-1x^3dx$ using trig identity substitution!

Is it ok to include an epilogue dedicated to colleagues who passed away in the end of the manuscript?

Why do Australian milk farmers need to protest supermarkets' milk price?

Time travel short story where dinosaur doesn't taste like chicken

How do anti-virus programs start at Windows boot?

Rejected in 4th interview round citing insufficient years of experience

Plywood subfloor won't screw down in a trailer home

What to do when during a meeting client people start to fight (even physically) with each others?

How to make readers know that my work has used a hidden constraint?

Who is our nearest neighbor

My adviser wants to be the first author

Ban on all campaign finance?

Best mythical creature to use as livestock?

Word for a person who has no opinion about whether god exists

What exactly is the purpose of connection links straped between the rocket and the launch pad

Latest web browser compatible with Windows 98

Do I need to leave some extra space available on the disk which my database log files reside, for log backup operations to successfully occur?

Silly Sally's Movie

Single word request: Harming the benefactor

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

Is going from continuous data to categorical always wrong?

Is all copper pipe pretty much the same?

Replacing Windows 7 security updates with anti-virus?

How could a female member of a species produce eggs unto death?

Can "semicircle" be used to refer to a part-circle that is not a exact half-circle?



Trig Subsitution When There's No Square Root


Struggling with an integral with trig substitutionDid I solve this integral correctly? (trig substitution)What is $int frac1sqrt25y^2-10y-3dy$Using trig substitution, how do you solve an integral when the leading coefficient under the radical isn't 1?How do you solve for bounds when performing trig substitution and knowing solving the trig functions yields multiple correct values of $theta$?Evalute $intfracx^5(36x^2+1)^3/2dx$ by trig sub?Integration question with trig subSolving $intfracsqrt4+xx, text dx$Definite integral of $y=sqrt(16-x^2)$Integral $intfracsqrt4x^2-1x^3dx$ using trig identity substitution!













7












$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22
















7












$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22














7












7








7





$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$




I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.







calculus integration improper-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 5:31









David K

55k344120




55k344120










asked Mar 10 at 21:09









CodingMeeCodingMee

454




454







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22













  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22








2




2




$begingroup$
The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
$endgroup$
– Kay K.
Mar 10 at 21:22





$begingroup$
The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
$endgroup$
– Kay K.
Mar 10 at 21:22











2 Answers
2






active

oldest

votes


















9












$begingroup$

You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




There's a slicker way to do it.



Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
$$
fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
$$

Now let's concentrate on the antiderivative
$$
intfrac1(1+u^2)^3/2,du=
intfrac1+u^2-u^2(1+u^2)^3/2,du=
intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
$$

Do the second term by parts
$$
int ufracu(1+u^2)^3/2,du=
-fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
$$

See what happens?
$$
intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
$$

which we can verify by direct differentiation.



Now
$$
left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
=1-fraca(r^2+a^2)^1/2
$$

and your integral is indeed
$$
fracArleft(1-fracasqrtr^2+a^2right)
$$






share|cite|improve this answer









$endgroup$




















    6












    $begingroup$

    Firstly you made an error in the first line of working
    $$(rsec(theta))^3=r^3sec^3(theta)$$
    Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142908%2ftrig-subsitution-when-theres-no-square-root%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      9












      $begingroup$

      You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




      There's a slicker way to do it.



      Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
      $$
      fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
      $$

      Now let's concentrate on the antiderivative
      $$
      intfrac1(1+u^2)^3/2,du=
      intfrac1+u^2-u^2(1+u^2)^3/2,du=
      intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
      $$

      Do the second term by parts
      $$
      int ufracu(1+u^2)^3/2,du=
      -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
      $$

      See what happens?
      $$
      intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
      $$

      which we can verify by direct differentiation.



      Now
      $$
      left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
      =1-fraca(r^2+a^2)^1/2
      $$

      and your integral is indeed
      $$
      fracArleft(1-fracasqrtr^2+a^2right)
      $$






      share|cite|improve this answer









      $endgroup$

















        9












        $begingroup$

        You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




        There's a slicker way to do it.



        Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
        $$
        fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
        $$

        Now let's concentrate on the antiderivative
        $$
        intfrac1(1+u^2)^3/2,du=
        intfrac1+u^2-u^2(1+u^2)^3/2,du=
        intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
        $$

        Do the second term by parts
        $$
        int ufracu(1+u^2)^3/2,du=
        -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
        $$

        See what happens?
        $$
        intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
        $$

        which we can verify by direct differentiation.



        Now
        $$
        left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
        =1-fraca(r^2+a^2)^1/2
        $$

        and your integral is indeed
        $$
        fracArleft(1-fracasqrtr^2+a^2right)
        $$






        share|cite|improve this answer









        $endgroup$















          9












          9








          9





          $begingroup$

          You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




          There's a slicker way to do it.



          Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
          $$
          fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
          $$

          Now let's concentrate on the antiderivative
          $$
          intfrac1(1+u^2)^3/2,du=
          intfrac1+u^2-u^2(1+u^2)^3/2,du=
          intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
          $$

          Do the second term by parts
          $$
          int ufracu(1+u^2)^3/2,du=
          -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
          $$

          See what happens?
          $$
          intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
          $$

          which we can verify by direct differentiation.



          Now
          $$
          left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
          =1-fraca(r^2+a^2)^1/2
          $$

          and your integral is indeed
          $$
          fracArleft(1-fracasqrtr^2+a^2right)
          $$






          share|cite|improve this answer









          $endgroup$



          You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




          There's a slicker way to do it.



          Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
          $$
          fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
          $$

          Now let's concentrate on the antiderivative
          $$
          intfrac1(1+u^2)^3/2,du=
          intfrac1+u^2-u^2(1+u^2)^3/2,du=
          intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
          $$

          Do the second term by parts
          $$
          int ufracu(1+u^2)^3/2,du=
          -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
          $$

          See what happens?
          $$
          intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
          $$

          which we can verify by direct differentiation.



          Now
          $$
          left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
          =1-fraca(r^2+a^2)^1/2
          $$

          and your integral is indeed
          $$
          fracArleft(1-fracasqrtr^2+a^2right)
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 10 at 21:57









          egregegreg

          184k1486205




          184k1486205





















              6












              $begingroup$

              Firstly you made an error in the first line of working
              $$(rsec(theta))^3=r^3sec^3(theta)$$
              Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






              share|cite|improve this answer









              $endgroup$

















                6












                $begingroup$

                Firstly you made an error in the first line of working
                $$(rsec(theta))^3=r^3sec^3(theta)$$
                Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






                share|cite|improve this answer









                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  Firstly you made an error in the first line of working
                  $$(rsec(theta))^3=r^3sec^3(theta)$$
                  Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






                  share|cite|improve this answer









                  $endgroup$



                  Firstly you made an error in the first line of working
                  $$(rsec(theta))^3=r^3sec^3(theta)$$
                  Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 10 at 21:32









                  Peter ForemanPeter Foreman

                  3,7921216




                  3,7921216



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142908%2ftrig-subsitution-when-theres-no-square-root%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                      Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                      Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers