Trig Subsitution When There's No Square RootStruggling with an integral with trig substitutionDid I solve this integral correctly? (trig substitution)What is $int frac1sqrt25y^2-10y-3dy$Using trig substitution, how do you solve an integral when the leading coefficient under the radical isn't 1?How do you solve for bounds when performing trig substitution and knowing solving the trig functions yields multiple correct values of $theta$?Evalute $intfracx^5(36x^2+1)^3/2dx$ by trig sub?Integration question with trig subSolving $intfracsqrt4+xx, text dx$Definite integral of $y=sqrt(16-x^2)$Integral $intfracsqrt4x^2-1x^3dx$ using trig identity substitution!

Is it ok to include an epilogue dedicated to colleagues who passed away in the end of the manuscript?

Why do Australian milk farmers need to protest supermarkets' milk price?

Time travel short story where dinosaur doesn't taste like chicken

How do anti-virus programs start at Windows boot?

Rejected in 4th interview round citing insufficient years of experience

Plywood subfloor won't screw down in a trailer home

What to do when during a meeting client people start to fight (even physically) with each others?

How to make readers know that my work has used a hidden constraint?

Who is our nearest neighbor

My adviser wants to be the first author

Ban on all campaign finance?

Best mythical creature to use as livestock?

Word for a person who has no opinion about whether god exists

What exactly is the purpose of connection links straped between the rocket and the launch pad

Latest web browser compatible with Windows 98

Do I need to leave some extra space available on the disk which my database log files reside, for log backup operations to successfully occur?

Silly Sally's Movie

Single word request: Harming the benefactor

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

Is going from continuous data to categorical always wrong?

Is all copper pipe pretty much the same?

Replacing Windows 7 security updates with anti-virus?

How could a female member of a species produce eggs unto death?

Can "semicircle" be used to refer to a part-circle that is not a exact half-circle?



Trig Subsitution When There's No Square Root


Struggling with an integral with trig substitutionDid I solve this integral correctly? (trig substitution)What is $int frac1sqrt25y^2-10y-3dy$Using trig substitution, how do you solve an integral when the leading coefficient under the radical isn't 1?How do you solve for bounds when performing trig substitution and knowing solving the trig functions yields multiple correct values of $theta$?Evalute $intfracx^5(36x^2+1)^3/2dx$ by trig sub?Integration question with trig subSolving $intfracsqrt4+xx, text dx$Definite integral of $y=sqrt(16-x^2)$Integral $intfracsqrt4x^2-1x^3dx$ using trig identity substitution!













7












$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22
















7












$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22














7












7








7





$begingroup$


I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.










share|cite|improve this question











$endgroup$




I would say I'm rather good at doing trig substitution when there is a square root, but when there isn't one, I'm lost.



I'm currently trying to solve the following question:



$$Ar int_a^infty fracdx(r^2+x^2)^(3/2)$$



Anyway, so far, I have that:



$$x = rtan theta$$



$$dx = rsec^2 theta$$



$$sqrt (r^2+x^2) = rsectheta$$



The triangle I based the above values on:



Triangle I based the above values on



Given that $(r^2+x^2)^(3/2)$ can be rewritten as $ (sqrtr^2+x^2)^3$, I begin to solve.
Please pretend I have $lim limits_b to infty$ in front of every line please.



beginalign
&= Ar int_a^b fracrsec^2theta(rsectheta)^3dtheta \
&= Ar int_a^b fracrsec^2thetar^3sec^6thetadtheta \
&= fracAr int_a^b frac1sec^4thetadtheta \
&= fracAr int_a^b cos^4theta dtheta \
&= fracAr int_a^b (cos^2theta)^2 dtheta \
&= fracAr int_a^b left[ frac12 1+cos(2theta)) right]^2dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) + cos^2(2theta) dtheta \
&= fracA4r int_a^b 1 + 2cos(2theta) dtheta quad+quad fracA4r int_a^b cos^2(2theta) dtheta
endalign



And from there it gets really messed up and I end up with a weird semi-final answer of $$fracA4r[2theta+sin(2theta)] + fracA32r [4theta+sin(4theta)]$$ which is wrong after I make substitutions.



I already know that the final answer is $dfracArleft(1-dfracasqrtr^2+a^2right)$, but I really want to understand this.







calculus integration improper-integrals trigonometric-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 5:31









David K

55k344120




55k344120










asked Mar 10 at 21:09









CodingMeeCodingMee

454




454







  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22













  • 2




    $begingroup$
    The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
    $endgroup$
    – Kay K.
    Mar 10 at 21:22








2




2




$begingroup$
The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
$endgroup$
– Kay K.
Mar 10 at 21:22





$begingroup$
The denominator in the 2nd line is $r^3sec^3theta$ instead of $r^3sec^6theta$.
$endgroup$
– Kay K.
Mar 10 at 21:22











2 Answers
2






active

oldest

votes


















9












$begingroup$

You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




There's a slicker way to do it.



Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
$$
fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
$$

Now let's concentrate on the antiderivative
$$
intfrac1(1+u^2)^3/2,du=
intfrac1+u^2-u^2(1+u^2)^3/2,du=
intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
$$

Do the second term by parts
$$
int ufracu(1+u^2)^3/2,du=
-fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
$$

See what happens?
$$
intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
$$

which we can verify by direct differentiation.



Now
$$
left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
=1-fraca(r^2+a^2)^1/2
$$

and your integral is indeed
$$
fracArleft(1-fracasqrtr^2+a^2right)
$$






share|cite|improve this answer









$endgroup$




















    6












    $begingroup$

    Firstly you made an error in the first line of working
    $$(rsec(theta))^3=r^3sec^3(theta)$$
    Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142908%2ftrig-subsitution-when-theres-no-square-root%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      9












      $begingroup$

      You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




      There's a slicker way to do it.



      Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
      $$
      fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
      $$

      Now let's concentrate on the antiderivative
      $$
      intfrac1(1+u^2)^3/2,du=
      intfrac1+u^2-u^2(1+u^2)^3/2,du=
      intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
      $$

      Do the second term by parts
      $$
      int ufracu(1+u^2)^3/2,du=
      -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
      $$

      See what happens?
      $$
      intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
      $$

      which we can verify by direct differentiation.



      Now
      $$
      left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
      =1-fraca(r^2+a^2)^1/2
      $$

      and your integral is indeed
      $$
      fracArleft(1-fracasqrtr^2+a^2right)
      $$






      share|cite|improve this answer









      $endgroup$

















        9












        $begingroup$

        You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




        There's a slicker way to do it.



        Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
        $$
        fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
        $$

        Now let's concentrate on the antiderivative
        $$
        intfrac1(1+u^2)^3/2,du=
        intfrac1+u^2-u^2(1+u^2)^3/2,du=
        intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
        $$

        Do the second term by parts
        $$
        int ufracu(1+u^2)^3/2,du=
        -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
        $$

        See what happens?
        $$
        intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
        $$

        which we can verify by direct differentiation.



        Now
        $$
        left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
        =1-fraca(r^2+a^2)^1/2
        $$

        and your integral is indeed
        $$
        fracArleft(1-fracasqrtr^2+a^2right)
        $$






        share|cite|improve this answer









        $endgroup$















          9












          9








          9





          $begingroup$

          You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




          There's a slicker way to do it.



          Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
          $$
          fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
          $$

          Now let's concentrate on the antiderivative
          $$
          intfrac1(1+u^2)^3/2,du=
          intfrac1+u^2-u^2(1+u^2)^3/2,du=
          intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
          $$

          Do the second term by parts
          $$
          int ufracu(1+u^2)^3/2,du=
          -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
          $$

          See what happens?
          $$
          intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
          $$

          which we can verify by direct differentiation.



          Now
          $$
          left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
          =1-fraca(r^2+a^2)^1/2
          $$

          and your integral is indeed
          $$
          fracArleft(1-fracasqrtr^2+a^2right)
          $$






          share|cite|improve this answer









          $endgroup$



          You are doing $(rsectheta)^3=r^6sec^6theta$. Oops! ;-)




          There's a slicker way to do it.



          Get rid of the $r$ with $x=ru$ to begin with, so your integral becomes
          $$
          fracArint_a/r^inftyfrac1(1+u^2)^3/2,du
          $$

          Now let's concentrate on the antiderivative
          $$
          intfrac1(1+u^2)^3/2,du=
          intfrac1+u^2-u^2(1+u^2)^3/2,du=
          intfrac1(1+u^2)^1/2,du-intfracu^2(1+u^2)^3/2,du
          $$

          Do the second term by parts
          $$
          int ufracu(1+u^2)^3/2,du=
          -fracu(1+u^2)^1/2+intfrac1(1+u^2)^1/2,du
          $$

          See what happens?
          $$
          intfrac1(1+u^2)^3/2,du=fracu(1+u^2)^1/2+c
          $$

          which we can verify by direct differentiation.



          Now
          $$
          left[fracu(1+u^2)^1/2right]_a/r^infty=1-fraca/r(1+(a/r)^2)^1/2
          =1-fraca(r^2+a^2)^1/2
          $$

          and your integral is indeed
          $$
          fracArleft(1-fracasqrtr^2+a^2right)
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 10 at 21:57









          egregegreg

          184k1486205




          184k1486205





















              6












              $begingroup$

              Firstly you made an error in the first line of working
              $$(rsec(theta))^3=r^3sec^3(theta)$$
              Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






              share|cite|improve this answer









              $endgroup$

















                6












                $begingroup$

                Firstly you made an error in the first line of working
                $$(rsec(theta))^3=r^3sec^3(theta)$$
                Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






                share|cite|improve this answer









                $endgroup$















                  6












                  6








                  6





                  $begingroup$

                  Firstly you made an error in the first line of working
                  $$(rsec(theta))^3=r^3sec^3(theta)$$
                  Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.






                  share|cite|improve this answer









                  $endgroup$



                  Firstly you made an error in the first line of working
                  $$(rsec(theta))^3=r^3sec^3(theta)$$
                  Secondly, you need to change the range of integration after performing a substitution. If $theta=arctan(fracxr)$ then the limits should change as $x=a implies theta=arctan(fracar)$ also $x=infty implies theta=fracpi2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 10 at 21:32









                  Peter ForemanPeter Foreman

                  3,7921216




                  3,7921216



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142908%2ftrig-subsitution-when-theres-no-square-root%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable