Calculating limit of second-order recursive sequence(limit of) a linear second order recurrence relation with variable coefficientsProving the limit of a recursive sequenceRecursive equation with limitRecursive sequence with square rootCalculating limit of sequence by Euler $e$Finding the limits to sequences given by recursive transformation of a vector: $a_n = a_n-1M$How can I find an explicit expression for this recursively defined sequence?Calculate a limit of recursive sequenceLimit of a sequence with real and natural number variablesFinding the limit of a recursive complex sequence

Want to switch to tankless, but can I use my existing wiring?

Decoding assembly instructions in a Game Boy disassembler

What has been your most complicated TikZ drawing?

How can I discourage/prevent PCs from using door choke-points?

Coworker uses her breast-pump everywhere in the office

What exactly is the purpose of connection links straped between the rocket and the launch pad

What does it mean when multiple 々 marks follow a 、?

Can the druid cantrip Thorn Whip really defeat a water weird this easily?

Format picture and text with TikZ and minipage

Does the Bracer of Flying Daggers benefit from the Dueling fighting style?

What is the dot in “1.2.4."

Can "semicircle" be used to refer to a part-circle that is not a exact half-circle?

How to make readers know that my work has used a hidden constraint?

Confusion with the nameplate of an induction motor

What is the likely impact on flights of grounding an entire aircraft series?

Humans have energy, but not water. What happens?

Prove that the total distance is minimised (when travelling across the longest path)

Playing ONE triplet (not three)

When is a batch class instantiated when you schedule it?

Is a lawful good "antagonist" effective?

Is it true that real estate prices mainly go up?

Why don't MCU characters ever seem to have language issues?

This equation is outside the page, how to modify it

Why must traveling waves have the same amplitude to form a standing wave?



Calculating limit of second-order recursive sequence


(limit of) a linear second order recurrence relation with variable coefficientsProving the limit of a recursive sequenceRecursive equation with limitRecursive sequence with square rootCalculating limit of sequence by Euler $e$Finding the limits to sequences given by recursive transformation of a vector: $a_n = a_n-1M$How can I find an explicit expression for this recursively defined sequence?Calculate a limit of recursive sequenceLimit of a sequence with real and natural number variablesFinding the limit of a recursive complex sequence













2












$begingroup$


Can someone give me a hint on how to calculate the limit for the following second-order recursive sequence:



beginalign
a_0 &= c_0, \
a_1 &= c_1, \
a_n &=fraca_n-1+a_n-22-frac(a_n-1)^2+(a_n-2)^22+(fraca_n-1+a_n-22)^2
endalign



I simulated it in Excel and I know that it converges to a constant or goes to negative infinity depending on $c_0,c_1$.



Can I separate the limit into 3 parts and calculate them one by one? Is it correct that I can not, because not all limits for each part exist?



I am mostly interested in the formula for the limit dependent on $c_0, c_1$ for an unrelated theoretical argument.










share|cite|improve this question









New contributor




F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    2












    $begingroup$


    Can someone give me a hint on how to calculate the limit for the following second-order recursive sequence:



    beginalign
    a_0 &= c_0, \
    a_1 &= c_1, \
    a_n &=fraca_n-1+a_n-22-frac(a_n-1)^2+(a_n-2)^22+(fraca_n-1+a_n-22)^2
    endalign



    I simulated it in Excel and I know that it converges to a constant or goes to negative infinity depending on $c_0,c_1$.



    Can I separate the limit into 3 parts and calculate them one by one? Is it correct that I can not, because not all limits for each part exist?



    I am mostly interested in the formula for the limit dependent on $c_0, c_1$ for an unrelated theoretical argument.










    share|cite|improve this question









    New contributor




    F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2


      1



      $begingroup$


      Can someone give me a hint on how to calculate the limit for the following second-order recursive sequence:



      beginalign
      a_0 &= c_0, \
      a_1 &= c_1, \
      a_n &=fraca_n-1+a_n-22-frac(a_n-1)^2+(a_n-2)^22+(fraca_n-1+a_n-22)^2
      endalign



      I simulated it in Excel and I know that it converges to a constant or goes to negative infinity depending on $c_0,c_1$.



      Can I separate the limit into 3 parts and calculate them one by one? Is it correct that I can not, because not all limits for each part exist?



      I am mostly interested in the formula for the limit dependent on $c_0, c_1$ for an unrelated theoretical argument.










      share|cite|improve this question









      New contributor




      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Can someone give me a hint on how to calculate the limit for the following second-order recursive sequence:



      beginalign
      a_0 &= c_0, \
      a_1 &= c_1, \
      a_n &=fraca_n-1+a_n-22-frac(a_n-1)^2+(a_n-2)^22+(fraca_n-1+a_n-22)^2
      endalign



      I simulated it in Excel and I know that it converges to a constant or goes to negative infinity depending on $c_0,c_1$.



      Can I separate the limit into 3 parts and calculate them one by one? Is it correct that I can not, because not all limits for each part exist?



      I am mostly interested in the formula for the limit dependent on $c_0, c_1$ for an unrelated theoretical argument.







      sequences-and-series limits recurrence-relations sequent-calculus






      share|cite|improve this question









      New contributor




      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited Mar 10 at 20:59







      F.L













      New contributor




      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Mar 10 at 19:35









      F.LF.L

      112




      112




      New contributor




      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      F.L is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          When $a_1-a_2geq 6$ or $ a_2-a_1geq 4 $, it diverges. Other cases
          are convergent.



          Proof : i) $$a_n
          = fraca_n-1+a_n-22 - (fraca_n-1-a_n-2 2)^2 $$



          When $|a_1-a_2|geq 6$, then $|a_n-a_n-1|geq 6$. It does not converge.



          ii) $a_2<a_1$ : If $a_1-a_2<6$ is close to $6$, then
          $$ a_2-a_3 < a_1-a_2 $$



          Hence there is large $N$ s.t. $a_i>
          a_i+1$
          for $ileq N-2$ and $a_N-1<a_N$.



          iii) $a_1<a_2$ : If $a_2-a_1geq 4
          $
          , then $a_2-a_3geq 6$.



          If $a_2-a_1<4$, then $a_2-a_3<6$.






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            F.L is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142782%2fcalculating-limit-of-second-order-recursive-sequence%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            When $a_1-a_2geq 6$ or $ a_2-a_1geq 4 $, it diverges. Other cases
            are convergent.



            Proof : i) $$a_n
            = fraca_n-1+a_n-22 - (fraca_n-1-a_n-2 2)^2 $$



            When $|a_1-a_2|geq 6$, then $|a_n-a_n-1|geq 6$. It does not converge.



            ii) $a_2<a_1$ : If $a_1-a_2<6$ is close to $6$, then
            $$ a_2-a_3 < a_1-a_2 $$



            Hence there is large $N$ s.t. $a_i>
            a_i+1$
            for $ileq N-2$ and $a_N-1<a_N$.



            iii) $a_1<a_2$ : If $a_2-a_1geq 4
            $
            , then $a_2-a_3geq 6$.



            If $a_2-a_1<4$, then $a_2-a_3<6$.






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              When $a_1-a_2geq 6$ or $ a_2-a_1geq 4 $, it diverges. Other cases
              are convergent.



              Proof : i) $$a_n
              = fraca_n-1+a_n-22 - (fraca_n-1-a_n-2 2)^2 $$



              When $|a_1-a_2|geq 6$, then $|a_n-a_n-1|geq 6$. It does not converge.



              ii) $a_2<a_1$ : If $a_1-a_2<6$ is close to $6$, then
              $$ a_2-a_3 < a_1-a_2 $$



              Hence there is large $N$ s.t. $a_i>
              a_i+1$
              for $ileq N-2$ and $a_N-1<a_N$.



              iii) $a_1<a_2$ : If $a_2-a_1geq 4
              $
              , then $a_2-a_3geq 6$.



              If $a_2-a_1<4$, then $a_2-a_3<6$.






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                When $a_1-a_2geq 6$ or $ a_2-a_1geq 4 $, it diverges. Other cases
                are convergent.



                Proof : i) $$a_n
                = fraca_n-1+a_n-22 - (fraca_n-1-a_n-2 2)^2 $$



                When $|a_1-a_2|geq 6$, then $|a_n-a_n-1|geq 6$. It does not converge.



                ii) $a_2<a_1$ : If $a_1-a_2<6$ is close to $6$, then
                $$ a_2-a_3 < a_1-a_2 $$



                Hence there is large $N$ s.t. $a_i>
                a_i+1$
                for $ileq N-2$ and $a_N-1<a_N$.



                iii) $a_1<a_2$ : If $a_2-a_1geq 4
                $
                , then $a_2-a_3geq 6$.



                If $a_2-a_1<4$, then $a_2-a_3<6$.






                share|cite|improve this answer









                $endgroup$



                When $a_1-a_2geq 6$ or $ a_2-a_1geq 4 $, it diverges. Other cases
                are convergent.



                Proof : i) $$a_n
                = fraca_n-1+a_n-22 - (fraca_n-1-a_n-2 2)^2 $$



                When $|a_1-a_2|geq 6$, then $|a_n-a_n-1|geq 6$. It does not converge.



                ii) $a_2<a_1$ : If $a_1-a_2<6$ is close to $6$, then
                $$ a_2-a_3 < a_1-a_2 $$



                Hence there is large $N$ s.t. $a_i>
                a_i+1$
                for $ileq N-2$ and $a_N-1<a_N$.



                iii) $a_1<a_2$ : If $a_2-a_1geq 4
                $
                , then $a_2-a_3geq 6$.



                If $a_2-a_1<4$, then $a_2-a_3<6$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                HK LeeHK Lee

                14.1k52360




                14.1k52360




















                    F.L is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    F.L is a new contributor. Be nice, and check out our Code of Conduct.












                    F.L is a new contributor. Be nice, and check out our Code of Conduct.











                    F.L is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142782%2fcalculating-limit-of-second-order-recursive-sequence%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

                    John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

                    Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".