Limit with integral and powerHow can I calculate the following limit? $lim_ntoinftyfrac1(ln n)^ln n$Calculate a limit where $sin n_k$ increases monotonically to 1.Limit of a Riemann Sum and IntegralLimit with Integral and Sigmahelp on limit exerciseHow to solve this integral and limit?prove limit of $ n^(1/loglog n) /bigl( ((log n)^cbigr)$Limit of an integralCurious limit with variable under integral?Evaluating $limlimits_xtoinftyxint_0^pi/4ln(1+tan^xt)dt$
Implement the Thanos sorting algorithm
Is `x >> pure y` equivalent to `liftM (const y) x`
Anatomically Correct Strange Women In Ponds Distributing Swords
Short story about space worker geeks who zone out by 'listening' to radiation from stars
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
How does it work when somebody invests in my business?
How does buying out courses with grant money work?
Is there a korbon needed for conversion?
Can the discrete variable be a negative number?
Applicability of Single Responsibility Principle
Large drywall patch supports
Was Spock the First Vulcan in Starfleet?
How do I extract a value from a time formatted value in excel?
How to be diplomatic in refusing to write code that breaches the privacy of our users
Escape a backup date in a file name
What can we do to stop prior company from asking us questions?
What is the opposite of 'gravitas'?
Arithmetic mean geometric mean inequality unclear
Is the destination of a commercial flight important for the pilot?
System.debug(JSON.Serialize(o)) Not longer shows full string
Purchasing a ticket for someone else in another country?
What is the intuitive meaning of having a linear relationship between the logs of two variables?
Go Pregnant or Go Home
A problem in Probability theory
Limit with integral and power
How can I calculate the following limit? $lim_ntoinftyfrac1(ln n)^ln n$Calculate a limit where $sin n_k$ increases monotonically to 1.Limit of a Riemann Sum and IntegralLimit with Integral and Sigmahelp on limit exerciseHow to solve this integral and limit?prove limit of $ n^(1/loglog n) /bigl( ((log n)^cbigr)$Limit of an integralCurious limit with variable under integral?Evaluating $limlimits_xtoinftyxint_0^pi/4ln(1+tan^xt)dt$
$begingroup$
I'm trying to calculate this limit:
$$lim_xtoinfty left(int_0^1 t^-tx dtright)^frac1x$$
I tried the squeezing idea without success.
calculus limits definite-integrals
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate this limit:
$$lim_xtoinfty left(int_0^1 t^-tx dtright)^frac1x$$
I tried the squeezing idea without success.
calculus limits definite-integrals
$endgroup$
2
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30
add a comment |
$begingroup$
I'm trying to calculate this limit:
$$lim_xtoinfty left(int_0^1 t^-tx dtright)^frac1x$$
I tried the squeezing idea without success.
calculus limits definite-integrals
$endgroup$
I'm trying to calculate this limit:
$$lim_xtoinfty left(int_0^1 t^-tx dtright)^frac1x$$
I tried the squeezing idea without success.
calculus limits definite-integrals
calculus limits definite-integrals
edited Mar 17 at 23:35
RRL
53k42573
53k42573
asked Feb 23 '17 at 19:13
song01song01
613
613
2
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30
add a comment |
2
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30
2
2
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For any large $x$ we have
$$ int_0^1t^-tx,dt = int_0^1expleft(-x tlog tright),dt = sum_ngeq 0fracx^nn!int_0^1t^n(-log t)^n,dt =sum_ngeq 0fracx^nn!(n+1)^n+1$$
If we call this entire function $f(x)$, the wanted limit equals
$$explim_xto +inftyfraclog f(x)x stackreldH= explim_xto +inftyfracf'(x)f(x)=explim_xto +inftyfracint_0^1(-tlog t)t^-tx,dtint_0^1t^-tx,dt$$
that is $colorrede^1/e$ since $t^-tx$ converges in distribution to $Ccdotdeltaleft(t-frac1eright)$.
$endgroup$
add a comment |
$begingroup$
A maximum for $t^-t$ on $[0,1]$ is attained at $t = e^-1.$
With $0 < t < 1,$ we have
$$t^-tx = exp(-t ln t)^x leqslant exp(e^-1)^x \ implies left(int_0^1 t^-tx , dtright)^1/x leqslant exp(e^-1).$$
Using continuity, for any small $epsilon$, there is an interval $[e^-1 - delta, e^-1 + delta] subset [0,1]$ where $t^-t > exp(e^-1) - epsilon$ and
$$left(int_0^1 t^-tx , dtright)^1/x geqslant left(int_exp(e^-1) - delta^exp(e^-1) + delta t^-tx , dtright)^1/x > (exp(e^-1)- epsilon)(2 delta)^1/x. $$
Since $(2delta)^1/x to 1$ as $x to infty$ and $epsilon$ can be arbitrarily small, the squeeze theorem yields
$$lim_x to inftyleft(int_0^1 t^-tx , dtright)^1/x = exp(e^-1)$$
$endgroup$
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158316%2flimit-with-integral-and-power%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For any large $x$ we have
$$ int_0^1t^-tx,dt = int_0^1expleft(-x tlog tright),dt = sum_ngeq 0fracx^nn!int_0^1t^n(-log t)^n,dt =sum_ngeq 0fracx^nn!(n+1)^n+1$$
If we call this entire function $f(x)$, the wanted limit equals
$$explim_xto +inftyfraclog f(x)x stackreldH= explim_xto +inftyfracf'(x)f(x)=explim_xto +inftyfracint_0^1(-tlog t)t^-tx,dtint_0^1t^-tx,dt$$
that is $colorrede^1/e$ since $t^-tx$ converges in distribution to $Ccdotdeltaleft(t-frac1eright)$.
$endgroup$
add a comment |
$begingroup$
For any large $x$ we have
$$ int_0^1t^-tx,dt = int_0^1expleft(-x tlog tright),dt = sum_ngeq 0fracx^nn!int_0^1t^n(-log t)^n,dt =sum_ngeq 0fracx^nn!(n+1)^n+1$$
If we call this entire function $f(x)$, the wanted limit equals
$$explim_xto +inftyfraclog f(x)x stackreldH= explim_xto +inftyfracf'(x)f(x)=explim_xto +inftyfracint_0^1(-tlog t)t^-tx,dtint_0^1t^-tx,dt$$
that is $colorrede^1/e$ since $t^-tx$ converges in distribution to $Ccdotdeltaleft(t-frac1eright)$.
$endgroup$
add a comment |
$begingroup$
For any large $x$ we have
$$ int_0^1t^-tx,dt = int_0^1expleft(-x tlog tright),dt = sum_ngeq 0fracx^nn!int_0^1t^n(-log t)^n,dt =sum_ngeq 0fracx^nn!(n+1)^n+1$$
If we call this entire function $f(x)$, the wanted limit equals
$$explim_xto +inftyfraclog f(x)x stackreldH= explim_xto +inftyfracf'(x)f(x)=explim_xto +inftyfracint_0^1(-tlog t)t^-tx,dtint_0^1t^-tx,dt$$
that is $colorrede^1/e$ since $t^-tx$ converges in distribution to $Ccdotdeltaleft(t-frac1eright)$.
$endgroup$
For any large $x$ we have
$$ int_0^1t^-tx,dt = int_0^1expleft(-x tlog tright),dt = sum_ngeq 0fracx^nn!int_0^1t^n(-log t)^n,dt =sum_ngeq 0fracx^nn!(n+1)^n+1$$
If we call this entire function $f(x)$, the wanted limit equals
$$explim_xto +inftyfraclog f(x)x stackreldH= explim_xto +inftyfracf'(x)f(x)=explim_xto +inftyfracint_0^1(-tlog t)t^-tx,dtint_0^1t^-tx,dt$$
that is $colorrede^1/e$ since $t^-tx$ converges in distribution to $Ccdotdeltaleft(t-frac1eright)$.
answered Feb 23 '17 at 19:29
Jack D'AurizioJack D'Aurizio
292k33284672
292k33284672
add a comment |
add a comment |
$begingroup$
A maximum for $t^-t$ on $[0,1]$ is attained at $t = e^-1.$
With $0 < t < 1,$ we have
$$t^-tx = exp(-t ln t)^x leqslant exp(e^-1)^x \ implies left(int_0^1 t^-tx , dtright)^1/x leqslant exp(e^-1).$$
Using continuity, for any small $epsilon$, there is an interval $[e^-1 - delta, e^-1 + delta] subset [0,1]$ where $t^-t > exp(e^-1) - epsilon$ and
$$left(int_0^1 t^-tx , dtright)^1/x geqslant left(int_exp(e^-1) - delta^exp(e^-1) + delta t^-tx , dtright)^1/x > (exp(e^-1)- epsilon)(2 delta)^1/x. $$
Since $(2delta)^1/x to 1$ as $x to infty$ and $epsilon$ can be arbitrarily small, the squeeze theorem yields
$$lim_x to inftyleft(int_0^1 t^-tx , dtright)^1/x = exp(e^-1)$$
$endgroup$
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
add a comment |
$begingroup$
A maximum for $t^-t$ on $[0,1]$ is attained at $t = e^-1.$
With $0 < t < 1,$ we have
$$t^-tx = exp(-t ln t)^x leqslant exp(e^-1)^x \ implies left(int_0^1 t^-tx , dtright)^1/x leqslant exp(e^-1).$$
Using continuity, for any small $epsilon$, there is an interval $[e^-1 - delta, e^-1 + delta] subset [0,1]$ where $t^-t > exp(e^-1) - epsilon$ and
$$left(int_0^1 t^-tx , dtright)^1/x geqslant left(int_exp(e^-1) - delta^exp(e^-1) + delta t^-tx , dtright)^1/x > (exp(e^-1)- epsilon)(2 delta)^1/x. $$
Since $(2delta)^1/x to 1$ as $x to infty$ and $epsilon$ can be arbitrarily small, the squeeze theorem yields
$$lim_x to inftyleft(int_0^1 t^-tx , dtright)^1/x = exp(e^-1)$$
$endgroup$
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
add a comment |
$begingroup$
A maximum for $t^-t$ on $[0,1]$ is attained at $t = e^-1.$
With $0 < t < 1,$ we have
$$t^-tx = exp(-t ln t)^x leqslant exp(e^-1)^x \ implies left(int_0^1 t^-tx , dtright)^1/x leqslant exp(e^-1).$$
Using continuity, for any small $epsilon$, there is an interval $[e^-1 - delta, e^-1 + delta] subset [0,1]$ where $t^-t > exp(e^-1) - epsilon$ and
$$left(int_0^1 t^-tx , dtright)^1/x geqslant left(int_exp(e^-1) - delta^exp(e^-1) + delta t^-tx , dtright)^1/x > (exp(e^-1)- epsilon)(2 delta)^1/x. $$
Since $(2delta)^1/x to 1$ as $x to infty$ and $epsilon$ can be arbitrarily small, the squeeze theorem yields
$$lim_x to inftyleft(int_0^1 t^-tx , dtright)^1/x = exp(e^-1)$$
$endgroup$
A maximum for $t^-t$ on $[0,1]$ is attained at $t = e^-1.$
With $0 < t < 1,$ we have
$$t^-tx = exp(-t ln t)^x leqslant exp(e^-1)^x \ implies left(int_0^1 t^-tx , dtright)^1/x leqslant exp(e^-1).$$
Using continuity, for any small $epsilon$, there is an interval $[e^-1 - delta, e^-1 + delta] subset [0,1]$ where $t^-t > exp(e^-1) - epsilon$ and
$$left(int_0^1 t^-tx , dtright)^1/x geqslant left(int_exp(e^-1) - delta^exp(e^-1) + delta t^-tx , dtright)^1/x > (exp(e^-1)- epsilon)(2 delta)^1/x. $$
Since $(2delta)^1/x to 1$ as $x to infty$ and $epsilon$ can be arbitrarily small, the squeeze theorem yields
$$lim_x to inftyleft(int_0^1 t^-tx , dtright)^1/x = exp(e^-1)$$
edited Feb 23 '17 at 19:46
answered Feb 23 '17 at 19:25
RRLRRL
53k42573
53k42573
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
add a comment |
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
$begingroup$
Perfect use of squeeze +1
$endgroup$
– Paramanand Singh
Feb 24 '17 at 6:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2158316%2flimit-with-integral-and-power%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If $f$ is continuous or just integrable , $lim_n to infty left(int_0^1 |f(x)|^n, dxright)^1/n = sup_x in [0,1] f(x)$ is a well known result but you can arrive at the conclusion with a squeezing argument as hinted.
$endgroup$
– RRL
Feb 23 '17 at 19:30