What are the detailed steps of the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Calculus Question: Improper integral $int_0^inftyfraccos(2x+1)sqrt[3]xdx$Finding the integral of $int_-infty^inftye^$.Computing a double integral $int_-infty^inftyint_-infty^inftyfracf(t)1+(x+g(t))^2dt dx$How do I solve this improper integral: $int_-infty^infty e^-x^2-xdx$?Evaluate the improper integral $int_-infty^0 e^xtextsin, xdx$Evaluate the $int_0^infty xe^-xdx$.Evaluate $int_-infty^inftycos(x)operatornamesech(x)dx$$int_-infty^infty e^-2ax^2dx=fracsqrtpisqrt2a$Improper integral $int_1^inftyfracdxxsqrtx^2 - 1$Improper integral with a parameter $int_0^infty e^-cx^2sin(tx)dx$
Output the ŋarâþ crîþ alphabet song without using (m)any letters
What do you call a plan that's an alternative plan in case your initial plan fails?
Gastric acid as a weapon
Java 8 stream max() function argument type Comparator vs Comparable
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
What is the correct way to use the pinch test for dehydration?
How to recreate this effect in Photoshop?
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
What would be the ideal power source for a cybernetic eye?
Did Kevin spill real chili?
Is it true that "carbohydrates are of no use for the basal metabolic need"?
When is phishing education going too far?
Why is black pepper both grey and black?
Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?
How to motivate offshore teams and trust them to deliver?
What makes black pepper strong or mild?
Why does Python start at index 1 when iterating an array backwards?
Bonus calculation: Am I making a mountain out of a molehill?
What is a Meta algorithm?
Examples of mediopassive verb constructions
Check which numbers satisfy the condition [A*B*C = A! + B! + C!]
What's the purpose of writing one's academic bio in 3rd person?
Are my PIs rude or am I just being too sensitive?
Should I call the interviewer directly, if HR aren't responding?
What are the detailed steps of the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Calculus Question: Improper integral $int_0^inftyfraccos(2x+1)sqrt[3]xdx$Finding the integral of $int_-infty^inftye^$.Computing a double integral $int_-infty^inftyint_-infty^inftyfracf(t)1+(x+g(t))^2dt dx$How do I solve this improper integral: $int_-infty^infty e^-x^2-xdx$?Evaluate the improper integral $int_-infty^0 e^xtextsin, xdx$Evaluate the $int_0^infty xe^-xdx$.Evaluate $int_-infty^inftycos(x)operatornamesech(x)dx$$int_-infty^infty e^-2ax^2dx=fracsqrtpisqrt2a$Improper integral $int_1^inftyfracdxxsqrtx^2 - 1$Improper integral with a parameter $int_0^infty e^-cx^2sin(tx)dx$
$begingroup$
What are the detailed steps of calculating the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$, I got an answer of $sqrtpi b$ from WolframAlpha but couldn't get a detailed answer of how it is derived.
Also, the indefinite integral is $-frac12sqrtpi brm erf(fraca-xsqrtb)+C$, I wonder how it is derived too.
Thanks.
calculus integration definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
What are the detailed steps of calculating the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$, I got an answer of $sqrtpi b$ from WolframAlpha but couldn't get a detailed answer of how it is derived.
Also, the indefinite integral is $-frac12sqrtpi brm erf(fraca-xsqrtb)+C$, I wonder how it is derived too.
Thanks.
calculus integration definite-integrals improper-integrals
$endgroup$
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
2
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35
add a comment |
$begingroup$
What are the detailed steps of calculating the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$, I got an answer of $sqrtpi b$ from WolframAlpha but couldn't get a detailed answer of how it is derived.
Also, the indefinite integral is $-frac12sqrtpi brm erf(fraca-xsqrtb)+C$, I wonder how it is derived too.
Thanks.
calculus integration definite-integrals improper-integrals
$endgroup$
What are the detailed steps of calculating the integral $int_-infty^+inftyrm e^(-frac(x-(a+bc^2))^2 2c^2),rm dx$, I got an answer of $sqrtpi b$ from WolframAlpha but couldn't get a detailed answer of how it is derived.
Also, the indefinite integral is $-frac12sqrtpi brm erf(fraca-xsqrtb)+C$, I wonder how it is derived too.
Thanks.
calculus integration definite-integrals improper-integrals
calculus integration definite-integrals improper-integrals
edited Feb 25 at 11:45
Harry Peter
5,53411439
5,53411439
asked Feb 22 at 5:53
user598604user598604
62
62
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
2
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35
add a comment |
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
2
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
2
2
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
put $x-(a+bc^2)=t$
then,
$I=displaystyleint_-infty^inftye^-t^2/2c^2 dt$
we know,
$mathcalF[e^-at^2]=displaystyleint_t=-infty^t=inftye^-at^2e^-jomega tdt=sqrtdfracpiaexpleft(dfrac-omega^24aright)$
for your case put $omega =0$ and $a=dfrac12c^2$
you'll get
$I=csqrt2pi$ notery along
note:
in general
$displaystyle int_-infty^inftyexp(-mx^n)dx=dfracdfrac1nGammaleft(dfrac1nright)n (m)^1/n$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3122238%2fwhat-are-the-detailed-steps-of-the-integral-int-infty-infty-rm-e%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
put $x-(a+bc^2)=t$
then,
$I=displaystyleint_-infty^inftye^-t^2/2c^2 dt$
we know,
$mathcalF[e^-at^2]=displaystyleint_t=-infty^t=inftye^-at^2e^-jomega tdt=sqrtdfracpiaexpleft(dfrac-omega^24aright)$
for your case put $omega =0$ and $a=dfrac12c^2$
you'll get
$I=csqrt2pi$ notery along
note:
in general
$displaystyle int_-infty^inftyexp(-mx^n)dx=dfracdfrac1nGammaleft(dfrac1nright)n (m)^1/n$
$endgroup$
add a comment |
$begingroup$
put $x-(a+bc^2)=t$
then,
$I=displaystyleint_-infty^inftye^-t^2/2c^2 dt$
we know,
$mathcalF[e^-at^2]=displaystyleint_t=-infty^t=inftye^-at^2e^-jomega tdt=sqrtdfracpiaexpleft(dfrac-omega^24aright)$
for your case put $omega =0$ and $a=dfrac12c^2$
you'll get
$I=csqrt2pi$ notery along
note:
in general
$displaystyle int_-infty^inftyexp(-mx^n)dx=dfracdfrac1nGammaleft(dfrac1nright)n (m)^1/n$
$endgroup$
add a comment |
$begingroup$
put $x-(a+bc^2)=t$
then,
$I=displaystyleint_-infty^inftye^-t^2/2c^2 dt$
we know,
$mathcalF[e^-at^2]=displaystyleint_t=-infty^t=inftye^-at^2e^-jomega tdt=sqrtdfracpiaexpleft(dfrac-omega^24aright)$
for your case put $omega =0$ and $a=dfrac12c^2$
you'll get
$I=csqrt2pi$ notery along
note:
in general
$displaystyle int_-infty^inftyexp(-mx^n)dx=dfracdfrac1nGammaleft(dfrac1nright)n (m)^1/n$
$endgroup$
put $x-(a+bc^2)=t$
then,
$I=displaystyleint_-infty^inftye^-t^2/2c^2 dt$
we know,
$mathcalF[e^-at^2]=displaystyleint_t=-infty^t=inftye^-at^2e^-jomega tdt=sqrtdfracpiaexpleft(dfrac-omega^24aright)$
for your case put $omega =0$ and $a=dfrac12c^2$
you'll get
$I=csqrt2pi$ notery along
note:
in general
$displaystyle int_-infty^inftyexp(-mx^n)dx=dfracdfrac1nGammaleft(dfrac1nright)n (m)^1/n$
edited Mar 26 at 8:07
answered Feb 22 at 6:46
Faraday PathakFaraday Pathak
1,155316
1,155316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3122238%2fwhat-are-the-detailed-steps-of-the-integral-int-infty-infty-rm-e%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
after some suitable substitutions problem will boil down to just finding fourier transform of gaussian function
$endgroup$
– Faraday Pathak
Feb 22 at 6:31
2
$begingroup$
The answer is wrong, it should be $sqrtpi c$ instead. This is just the Gaussian integral en.wikipedia.org/wiki/Gaussian_integral
$endgroup$
– Andrei
Feb 22 at 6:35