Matrix product and eigen values Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Eigenvalues of product of a matrix and a diagonal matrixEigenvalues of product of a matrix and a diagonal matrixRelation between trace and Ky Fan normsymmetric normalized Graph Laplacian and symmetric normalized Adjacency matrix eigenvaluesWeighted undirected graphs, complex Laplacian, complex eigenvalues & spectral cluseringWhat is the multiplicity of the largest eigenvalue of a graph?What's the relationship between the rank and eigenvalues of symmetric positive semidefinite matrix (real domain)?Laplacian spectrum of directed network (digraph) and its complementMaximizing the smallest positive eigenvalue of the Laplacian matrix via SDPIs the off-diagonal part of a covariance matrix, $M = Sigma -operatorname diag(Sigma)$ studied?Why are we interested in finding the spectrum of products of graphs?

Multi tool use
Multi tool use

Why aren't air breathing engines used as small first stages

Why does Python start at index -1 when indexing a list from the end?

Models of set theory where not every set can be linearly ordered

Super Attribute Position on Product Page Magento 1

Should I call the interviewer directly, if HR aren't responding?

What is this single-engine low-wing propeller plane?

Antler Helmet: Can it work?

Single word antonym of "flightless"

iPhone Wallpaper?

When is phishing education going too far?

What is the musical term for a note that continously plays through a melody?

Why is black pepper both grey and black?

How to recreate this effect in Photoshop?

How to motivate offshore teams and trust them to deliver?

How does a Death Domain cleric's Touch of Death feature work with Touch-range spells delivered by familiars?

Proof involving the spectral radius and the Jordan canonical form

Sorting numerically

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

Are my PIs rude or am I just being too sensitive?

Why was the term "discrete" used in discrete logarithm?

How can I fade player character when he goes inside or outside of the area?

How can players work together to take actions that are otherwise impossible?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

If a contract sometimes uses the wrong name, is it still valid?



Matrix product and eigen values



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Eigenvalues of product of a matrix and a diagonal matrixEigenvalues of product of a matrix and a diagonal matrixRelation between trace and Ky Fan normsymmetric normalized Graph Laplacian and symmetric normalized Adjacency matrix eigenvaluesWeighted undirected graphs, complex Laplacian, complex eigenvalues & spectral cluseringWhat is the multiplicity of the largest eigenvalue of a graph?What's the relationship between the rank and eigenvalues of symmetric positive semidefinite matrix (real domain)?Laplacian spectrum of directed network (digraph) and its complementMaximizing the smallest positive eigenvalue of the Laplacian matrix via SDPIs the off-diagonal part of a covariance matrix, $M = Sigma -operatorname diag(Sigma)$ studied?Why are we interested in finding the spectrum of products of graphs?










1












$begingroup$


Is there any relationship between eigenvalues(or spectrum) of graph Laplacian matrix and the eigenvalues of the product of a real symmetric matrix and the Laplacian matrix?



My problem at hand is as follows :



Let A=L*B.



What is the relationship between spectrum (or eigenvalues) of L with the spectrum of A?



L is Laplacian of an undirected graph, hence real symmetric and singular.
B is a real symmetric matrix.



I want to show that if I increase the magnitude of eigenvalues of L, the eigenvalues of A will also increase. However, all I could find was a trace inequality relationship, and inequality doesn't necessarily lead to any conclusion.










share|cite|improve this question









$endgroup$











  • $begingroup$
    If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:17











  • $begingroup$
    The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:26










  • $begingroup$
    @HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
    $endgroup$
    – Abhiram V P
    Mar 26 at 12:38










  • $begingroup$
    I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:41










  • $begingroup$
    (And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:44















1












$begingroup$


Is there any relationship between eigenvalues(or spectrum) of graph Laplacian matrix and the eigenvalues of the product of a real symmetric matrix and the Laplacian matrix?



My problem at hand is as follows :



Let A=L*B.



What is the relationship between spectrum (or eigenvalues) of L with the spectrum of A?



L is Laplacian of an undirected graph, hence real symmetric and singular.
B is a real symmetric matrix.



I want to show that if I increase the magnitude of eigenvalues of L, the eigenvalues of A will also increase. However, all I could find was a trace inequality relationship, and inequality doesn't necessarily lead to any conclusion.










share|cite|improve this question









$endgroup$











  • $begingroup$
    If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:17











  • $begingroup$
    The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:26










  • $begingroup$
    @HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
    $endgroup$
    – Abhiram V P
    Mar 26 at 12:38










  • $begingroup$
    I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:41










  • $begingroup$
    (And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:44













1












1








1


0



$begingroup$


Is there any relationship between eigenvalues(or spectrum) of graph Laplacian matrix and the eigenvalues of the product of a real symmetric matrix and the Laplacian matrix?



My problem at hand is as follows :



Let A=L*B.



What is the relationship between spectrum (or eigenvalues) of L with the spectrum of A?



L is Laplacian of an undirected graph, hence real symmetric and singular.
B is a real symmetric matrix.



I want to show that if I increase the magnitude of eigenvalues of L, the eigenvalues of A will also increase. However, all I could find was a trace inequality relationship, and inequality doesn't necessarily lead to any conclusion.










share|cite|improve this question









$endgroup$




Is there any relationship between eigenvalues(or spectrum) of graph Laplacian matrix and the eigenvalues of the product of a real symmetric matrix and the Laplacian matrix?



My problem at hand is as follows :



Let A=L*B.



What is the relationship between spectrum (or eigenvalues) of L with the spectrum of A?



L is Laplacian of an undirected graph, hence real symmetric and singular.
B is a real symmetric matrix.



I want to show that if I increase the magnitude of eigenvalues of L, the eigenvalues of A will also increase. However, all I could find was a trace inequality relationship, and inequality doesn't necessarily lead to any conclusion.







matrices graph-theory eigenvalues-eigenvectors trace graph-laplacian






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 26 at 10:37









Abhiram V PAbhiram V P

255




255











  • $begingroup$
    If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:17











  • $begingroup$
    The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:26










  • $begingroup$
    @HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
    $endgroup$
    – Abhiram V P
    Mar 26 at 12:38










  • $begingroup$
    I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:41










  • $begingroup$
    (And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:44
















  • $begingroup$
    If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:17











  • $begingroup$
    The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
    $endgroup$
    – Henning Makholm
    Mar 26 at 11:26










  • $begingroup$
    @HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
    $endgroup$
    – Abhiram V P
    Mar 26 at 12:38










  • $begingroup$
    I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:41










  • $begingroup$
    (And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
    $endgroup$
    – Henning Makholm
    Mar 26 at 12:44















$begingroup$
If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
$endgroup$
– Henning Makholm
Mar 26 at 11:17





$begingroup$
If you count geometric multiplicities, eigenvalues may disappear. Does that count as "increasing"? For example if $$ L_1 = beginbmatrix0&0\0&0endbmatrix qquad L_2 = beginbmatrix1&-1\-1&1endbmatrix qquad B=beginbmatrix-1 &0 \ 0 & 1endbmatrix$$ then going from $L_1$ to $L_2$ changes the eigenvalues from $0$ and $0$ to $0$ and $2$, certainly as good an increase as we can hope for given that the $L$s are always singular. But the eigenvalues of $L_1B$ are $0$ and $0$ whereas $L_2B$ only has a single $0$. Is that an increase?
$endgroup$
– Henning Makholm
Mar 26 at 11:17













$begingroup$
The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
$endgroup$
– Henning Makholm
Mar 26 at 11:26




$begingroup$
The topmost question in the "Related" list looks pretty relevant, though it is more picky about the choice for $B$.
$endgroup$
– Henning Makholm
Mar 26 at 11:26












$begingroup$
@HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
$endgroup$
– Abhiram V P
Mar 26 at 12:38




$begingroup$
@HenningMakholm Thank you for the comment. Regarding your first question, I could not understand the difference between the two in "eigenvalues of L1B are 0 and 0 whereas L2B only has a single 0". And were you trying to give a counterexample for the statement? If B is an identity matrix, then L2B would have eigenvalues 0 and 2. I am looking for an analytical proof which says that by increasing eigenvalue of one matrix, the eigenvalue of the product is also increased. I am getting that trend in my case while using the values, but an analytical proof is what I am after.
$endgroup$
– Abhiram V P
Mar 26 at 12:38












$begingroup$
I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
$endgroup$
– Henning Makholm
Mar 26 at 12:41




$begingroup$
I am asking you whether this counts as a counterexample for you, since $L_1B$ has the eigenvalue $0$ with geometric multiplicity $2$ and $L_2B$ has the eigenvalue $0$ with geometric multiplicity $1$ and no other eigenvalues. One of the eigenvalues of $L_1B$ goes from being $0$ to not being there at all! Do you consider that to be an "increase" or not?
$endgroup$
– Henning Makholm
Mar 26 at 12:41












$begingroup$
(And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
$endgroup$
– Henning Makholm
Mar 26 at 12:44




$begingroup$
(And I don't understand why you say "If $B$ is an identity matrix", since I have explicitly specified what $B$ in my example is -- and that is not the identity matrix").
$endgroup$
– Henning Makholm
Mar 26 at 12:44










0






active

oldest

votes












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163012%2fmatrix-product-and-eigen-values%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163012%2fmatrix-product-and-eigen-values%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







8vVjK6Ct8J YN1xguRk,4AYiEJRmkJLGbrks82oGhFd1qnVFh
XwbCS8,R2cKDT,noExzuG2AlGiqxRRHAnyWvzH 0DHU WyYMm6Qt5mtl6c

Popular posts from this blog

Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee