Advice on an integral involving the error functionIntegral of product of exponential function and two complementary error functions (erfc)Properties and representations of the the rescaled complementary error function $mathrmerfcxz$Definite integral involving Error functionHow to compute an integral involving the error functionIntegral involving the error function of log(x)Proof of Integral (Gradshteyn & Ryzhik 3.462.1)Integral involving the Erf functionSolving an integral using the error functionIntegral involving Erf functionIntegral involving erf and exponential
Modeling an IP Address
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Which country benefited the most from UN Security Council vetoes?
What's the output of a record needle playing an out-of-speed record
tikz convert color string to hex value
Definite integral giving negative value as a result?
Cross compiling for RPi - error while loading shared libraries
Add text to same line using sed
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Theorems that impeded progress
Can you really stack all of this on an Opportunity Attack?
Convert two switches to a dual stack, and add outlet - possible here?
Perform and show arithmetic with LuaLaTeX
LaTeX: Why are digits allowed in environments, but forbidden in commands?
Watching something be written to a file live with tail
Replacing matching entries in one column of a file by another column from a different file
Is it unprofessional to ask if a job posting on GlassDoor is real?
Why are electrically insulating heatsinks so rare? Is it just cost?
What typically incentivizes a professor to change jobs to a lower ranking university?
What defenses are there against being summoned by the Gate spell?
Malcev's paper "On a class of homogeneous spaces" in English
Why is consensus so controversial in Britain?
How does quantile regression compare to logistic regression with the variable split at the quantile?
Is it possible to run Internet Explorer on OS X El Capitan?
Advice on an integral involving the error function
Integral of product of exponential function and two complementary error functions (erfc)Properties and representations of the the rescaled complementary error function $mathrmerfcxz$Definite integral involving Error functionHow to compute an integral involving the error functionIntegral involving the error function of log(x)Proof of Integral (Gradshteyn & Ryzhik 3.462.1)Integral involving the Erf functionSolving an integral using the error functionIntegral involving Erf functionIntegral involving erf and exponential
$begingroup$
I'd like to calculate the following integral:
$$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$
where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.
I've tried a few approaches, but with no success.
The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):
$$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$
but the change of variables requires a change in limits.
Any advice would be greatly appreciated!
integration special-functions error-function
$endgroup$
add a comment |
$begingroup$
I'd like to calculate the following integral:
$$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$
where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.
I've tried a few approaches, but with no success.
The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):
$$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$
but the change of variables requires a change in limits.
Any advice would be greatly appreciated!
integration special-functions error-function
$endgroup$
add a comment |
$begingroup$
I'd like to calculate the following integral:
$$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$
where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.
I've tried a few approaches, but with no success.
The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):
$$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$
but the change of variables requires a change in limits.
Any advice would be greatly appreciated!
integration special-functions error-function
$endgroup$
I'd like to calculate the following integral:
$$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$
where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.
I've tried a few approaches, but with no success.
The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):
$$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$
but the change of variables requires a change in limits.
Any advice would be greatly appreciated!
integration special-functions error-function
integration special-functions error-function
edited Apr 9 '13 at 12:10
J. M. is not a mathematician
61.1k5152290
61.1k5152290
asked Dec 10 '12 at 9:04
DonaghDonagh
758
758
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you let: $$t = sqrt1 + x,$$
and change limits appropriately, Mathematica evaluates it as:
$$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
.$$
Not as neat as I'd like it, but there you go.
$endgroup$
add a comment |
$begingroup$
I'd start with an integration by parts, which should give you
$$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
Now according to Maple, for $A > 0$
$$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
1/2,frac rm e^A-2,alpha,sqrt A left(
rm erfleft(-sqrt A+alpharight)+1+ left( 1-
rm erfleft(sqrt A+alpharight) right) rm e^4,
alpha,sqrt A right) sqrt pi sqrt A$$
However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.
$endgroup$
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
add a comment |
$begingroup$
Let us define:
begineqnarray
J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
&underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
endeqnarray
Now we differentiate with respect to $alpha$. We have:
begineqnarray
&&fracpartialpartial alpha J(alpha)=\
&& intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
&& frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
&&
frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
sqrtB right|_1^infty =\
%
&&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
endeqnarray
where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
$.
Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
begineqnarray
gamma- J(alpha) =
%
gammacdot (1-erf(alpha-frac1beta)) +
fracgamma e^frac1gamma e^-alpha Delta_-2 delta
left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
fracgamma e^frac1gamma4 delta
left(
Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
right)
endeqnarray
In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
dd = Sqrt[1/b^2 + 1/g];
Dm, Dp = 2 -1/b + dd, 1/b + dd;
a = Range[0, 2, 0.001];
f = Interpolation[
Transpose[a,
NIntegrate[
Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
Infinity] & /@ a]]
In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
f'[a]
E^(1/g)/Sqrt[
1/b^2 + 1/
g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])
g - f[a]
g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])
Out[447]= 0.648692
Out[448]= 0.648691540832040074541903643440002542062490436
Out[449]= 0.681556
Out[450]= 0.681555757815934967025234698639289684849178686
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f255322%2fadvice-on-an-integral-involving-the-error-function%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you let: $$t = sqrt1 + x,$$
and change limits appropriately, Mathematica evaluates it as:
$$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
.$$
Not as neat as I'd like it, but there you go.
$endgroup$
add a comment |
$begingroup$
If you let: $$t = sqrt1 + x,$$
and change limits appropriately, Mathematica evaluates it as:
$$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
.$$
Not as neat as I'd like it, but there you go.
$endgroup$
add a comment |
$begingroup$
If you let: $$t = sqrt1 + x,$$
and change limits appropriately, Mathematica evaluates it as:
$$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
.$$
Not as neat as I'd like it, but there you go.
$endgroup$
If you let: $$t = sqrt1 + x,$$
and change limits appropriately, Mathematica evaluates it as:
$$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
.$$
Not as neat as I'd like it, but there you go.
answered Dec 10 '12 at 12:11
DonaghDonagh
758
758
add a comment |
add a comment |
$begingroup$
I'd start with an integration by parts, which should give you
$$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
Now according to Maple, for $A > 0$
$$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
1/2,frac rm e^A-2,alpha,sqrt A left(
rm erfleft(-sqrt A+alpharight)+1+ left( 1-
rm erfleft(sqrt A+alpharight) right) rm e^4,
alpha,sqrt A right) sqrt pi sqrt A$$
However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.
$endgroup$
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
add a comment |
$begingroup$
I'd start with an integration by parts, which should give you
$$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
Now according to Maple, for $A > 0$
$$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
1/2,frac rm e^A-2,alpha,sqrt A left(
rm erfleft(-sqrt A+alpharight)+1+ left( 1-
rm erfleft(sqrt A+alpharight) right) rm e^4,
alpha,sqrt A right) sqrt pi sqrt A$$
However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.
$endgroup$
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
add a comment |
$begingroup$
I'd start with an integration by parts, which should give you
$$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
Now according to Maple, for $A > 0$
$$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
1/2,frac rm e^A-2,alpha,sqrt A left(
rm erfleft(-sqrt A+alpharight)+1+ left( 1-
rm erfleft(sqrt A+alpharight) right) rm e^4,
alpha,sqrt A right) sqrt pi sqrt A$$
However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.
$endgroup$
I'd start with an integration by parts, which should give you
$$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
Now according to Maple, for $A > 0$
$$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
1/2,frac rm e^A-2,alpha,sqrt A left(
rm erfleft(-sqrt A+alpharight)+1+ left( 1-
rm erfleft(sqrt A+alpharight) right) rm e^4,
alpha,sqrt A right) sqrt pi sqrt A$$
However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.
answered Dec 10 '12 at 9:52
Robert IsraelRobert Israel
330k23219473
330k23219473
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
add a comment |
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
$begingroup$
Thanks, Robert. I've continued from your suggestion below.
$endgroup$
– Donagh
Dec 10 '12 at 12:12
add a comment |
$begingroup$
Let us define:
begineqnarray
J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
&underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
endeqnarray
Now we differentiate with respect to $alpha$. We have:
begineqnarray
&&fracpartialpartial alpha J(alpha)=\
&& intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
&& frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
&&
frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
sqrtB right|_1^infty =\
%
&&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
endeqnarray
where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
$.
Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
begineqnarray
gamma- J(alpha) =
%
gammacdot (1-erf(alpha-frac1beta)) +
fracgamma e^frac1gamma e^-alpha Delta_-2 delta
left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
fracgamma e^frac1gamma4 delta
left(
Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
right)
endeqnarray
In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
dd = Sqrt[1/b^2 + 1/g];
Dm, Dp = 2 -1/b + dd, 1/b + dd;
a = Range[0, 2, 0.001];
f = Interpolation[
Transpose[a,
NIntegrate[
Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
Infinity] & /@ a]]
In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
f'[a]
E^(1/g)/Sqrt[
1/b^2 + 1/
g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])
g - f[a]
g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])
Out[447]= 0.648692
Out[448]= 0.648691540832040074541903643440002542062490436
Out[449]= 0.681556
Out[450]= 0.681555757815934967025234698639289684849178686
$endgroup$
add a comment |
$begingroup$
Let us define:
begineqnarray
J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
&underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
endeqnarray
Now we differentiate with respect to $alpha$. We have:
begineqnarray
&&fracpartialpartial alpha J(alpha)=\
&& intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
&& frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
&&
frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
sqrtB right|_1^infty =\
%
&&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
endeqnarray
where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
$.
Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
begineqnarray
gamma- J(alpha) =
%
gammacdot (1-erf(alpha-frac1beta)) +
fracgamma e^frac1gamma e^-alpha Delta_-2 delta
left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
fracgamma e^frac1gamma4 delta
left(
Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
right)
endeqnarray
In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
dd = Sqrt[1/b^2 + 1/g];
Dm, Dp = 2 -1/b + dd, 1/b + dd;
a = Range[0, 2, 0.001];
f = Interpolation[
Transpose[a,
NIntegrate[
Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
Infinity] & /@ a]]
In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
f'[a]
E^(1/g)/Sqrt[
1/b^2 + 1/
g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])
g - f[a]
g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])
Out[447]= 0.648692
Out[448]= 0.648691540832040074541903643440002542062490436
Out[449]= 0.681556
Out[450]= 0.681555757815934967025234698639289684849178686
$endgroup$
add a comment |
$begingroup$
Let us define:
begineqnarray
J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
&underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
endeqnarray
Now we differentiate with respect to $alpha$. We have:
begineqnarray
&&fracpartialpartial alpha J(alpha)=\
&& intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
&& frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
&&
frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
sqrtB right|_1^infty =\
%
&&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
endeqnarray
where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
$.
Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
begineqnarray
gamma- J(alpha) =
%
gammacdot (1-erf(alpha-frac1beta)) +
fracgamma e^frac1gamma e^-alpha Delta_-2 delta
left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
fracgamma e^frac1gamma4 delta
left(
Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
right)
endeqnarray
In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
dd = Sqrt[1/b^2 + 1/g];
Dm, Dp = 2 -1/b + dd, 1/b + dd;
a = Range[0, 2, 0.001];
f = Interpolation[
Transpose[a,
NIntegrate[
Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
Infinity] & /@ a]]
In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
f'[a]
E^(1/g)/Sqrt[
1/b^2 + 1/
g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])
g - f[a]
g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])
Out[447]= 0.648692
Out[448]= 0.648691540832040074541903643440002542062490436
Out[449]= 0.681556
Out[450]= 0.681555757815934967025234698639289684849178686
$endgroup$
Let us define:
begineqnarray
J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
&underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
endeqnarray
Now we differentiate with respect to $alpha$. We have:
begineqnarray
&&fracpartialpartial alpha J(alpha)=\
&& intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
&& frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
&&
frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
sqrtB right|_1^infty =\
%
&&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
endeqnarray
where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
$.
Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
begineqnarray
gamma- J(alpha) =
%
gammacdot (1-erf(alpha-frac1beta)) +
fracgamma e^frac1gamma e^-alpha Delta_-2 delta
left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
fracgamma e^frac1gamma4 delta
left(
Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
right)
endeqnarray
In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
dd = Sqrt[1/b^2 + 1/g];
Dm, Dp = 2 -1/b + dd, 1/b + dd;
a = Range[0, 2, 0.001];
f = Interpolation[
Transpose[a,
NIntegrate[
Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
Infinity] & /@ a]]
In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
f'[a]
E^(1/g)/Sqrt[
1/b^2 + 1/
g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])
g - f[a]
g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])
Out[447]= 0.648692
Out[448]= 0.648691540832040074541903643440002542062490436
Out[449]= 0.681556
Out[450]= 0.681555757815934967025234698639289684849178686
answered Mar 21 at 18:12
PrzemoPrzemo
4,65811032
4,65811032
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f255322%2fadvice-on-an-integral-involving-the-error-function%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown