Advice on an integral involving the error functionIntegral of product of exponential function and two complementary error functions (erfc)Properties and representations of the the rescaled complementary error function $mathrmerfcxz$Definite integral involving Error functionHow to compute an integral involving the error functionIntegral involving the error function of log(x)Proof of Integral (Gradshteyn & Ryzhik 3.462.1)Integral involving the Erf functionSolving an integral using the error functionIntegral involving Erf functionIntegral involving erf and exponential

Modeling an IP Address

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

Which country benefited the most from UN Security Council vetoes?

What's the output of a record needle playing an out-of-speed record

tikz convert color string to hex value

Definite integral giving negative value as a result?

Cross compiling for RPi - error while loading shared libraries

Add text to same line using sed

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Theorems that impeded progress

Can you really stack all of this on an Opportunity Attack?

Convert two switches to a dual stack, and add outlet - possible here?

Perform and show arithmetic with LuaLaTeX

LaTeX: Why are digits allowed in environments, but forbidden in commands?

Watching something be written to a file live with tail

Replacing matching entries in one column of a file by another column from a different file

Is it unprofessional to ask if a job posting on GlassDoor is real?

Why are electrically insulating heatsinks so rare? Is it just cost?

What typically incentivizes a professor to change jobs to a lower ranking university?

What defenses are there against being summoned by the Gate spell?

Malcev's paper "On a class of homogeneous spaces" in English

Why is consensus so controversial in Britain?

How does quantile regression compare to logistic regression with the variable split at the quantile?

Is it possible to run Internet Explorer on OS X El Capitan?



Advice on an integral involving the error function


Integral of product of exponential function and two complementary error functions (erfc)Properties and representations of the the rescaled complementary error function $mathrmerfcxz$Definite integral involving Error functionHow to compute an integral involving the error functionIntegral involving the error function of log(x)Proof of Integral (Gradshteyn & Ryzhik 3.462.1)Integral involving the Erf functionSolving an integral using the error functionIntegral involving Erf functionIntegral involving erf and exponential













4












$begingroup$


I'd like to calculate the following integral:



$$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$



where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.



I've tried a few approaches, but with no success.



The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):



$$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$



but the change of variables requires a change in limits.



Any advice would be greatly appreciated!










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    I'd like to calculate the following integral:



    $$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$



    where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.



    I've tried a few approaches, but with no success.



    The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):



    $$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$



    but the change of variables requires a change in limits.



    Any advice would be greatly appreciated!










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$


      I'd like to calculate the following integral:



      $$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$



      where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.



      I've tried a few approaches, but with no success.



      The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):



      $$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$



      but the change of variables requires a change in limits.



      Any advice would be greatly appreciated!










      share|cite|improve this question











      $endgroup$




      I'd like to calculate the following integral:



      $$int^infty_0 mathrmerfleft(fracalphasqrt1+x - fracsqrt1+xbetaright) expleft(-fracxgammaright), dx,$$



      where $beta > 0$, $gamma > 0$ and $alpha in mathbbR$.



      I've tried a few approaches, but with no success.



      The form is similar to Equation 12 on page 177 of Erdelyi's Tables of Integral Transforms (Vol. 1):



      $$int^infty_0 mathrmerfleft(fracalphasqrtt - fracsqrttbetaright) expleft(-fractgammaright), dt$$



      but the change of variables requires a change in limits.



      Any advice would be greatly appreciated!







      integration special-functions error-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 9 '13 at 12:10









      J. M. is not a mathematician

      61.1k5152290




      61.1k5152290










      asked Dec 10 '12 at 9:04









      DonaghDonagh

      758




      758




















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          If you let: $$t = sqrt1 + x,$$



          and change limits appropriately, Mathematica evaluates it as:



          $$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
          .$$



          Not as neat as I'd like it, but there you go.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            I'd start with an integration by parts, which should give you
            $$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
            exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
            Now according to Maple, for $A > 0$
            $$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
            1/2,frac rm e^A-2,alpha,sqrt A left(
            rm erfleft(-sqrt A+alpharight)+1+ left( 1-
            rm erfleft(sqrt A+alpharight) right) rm e^4,
            alpha,sqrt A right) sqrt pi sqrt A$$
            However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thanks, Robert. I've continued from your suggestion below.
              $endgroup$
              – Donagh
              Dec 10 '12 at 12:12


















            0












            $begingroup$

            Let us define:
            begineqnarray
            J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
            &underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
            endeqnarray

            Now we differentiate with respect to $alpha$. We have:
            begineqnarray
            &&fracpartialpartial alpha J(alpha)=\
            && intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
            && frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
            &&
            frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
            left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
            sqrtB right|_1^infty =\
            %
            &&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
            texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
            endeqnarray

            where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
            $
            .



            Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
            begineqnarray
            gamma- J(alpha) =
            %
            gammacdot (1-erf(alpha-frac1beta)) +
            fracgamma e^frac1gamma e^-alpha Delta_-2 delta
            left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
            fracgamma e^frac1gamma4 delta
            left(
            Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
            right)
            endeqnarray



            In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
            dd = Sqrt[1/b^2 + 1/g];
            Dm, Dp = 2 -1/b + dd, 1/b + dd;
            a = Range[0, 2, 0.001];
            f = Interpolation[
            Transpose[a,
            NIntegrate[
            Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
            Infinity] & /@ a]]



            In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
            f'[a]
            E^(1/g)/Sqrt[
            1/b^2 + 1/
            g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
            a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
            E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
            E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])

            g - f[a]


            g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
            2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
            4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])


            Out[447]= 0.648692

            Out[448]= 0.648691540832040074541903643440002542062490436

            Out[449]= 0.681556

            Out[450]= 0.681555757815934967025234698639289684849178686





            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f255322%2fadvice-on-an-integral-involving-the-error-function%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              If you let: $$t = sqrt1 + x,$$



              and change limits appropriately, Mathematica evaluates it as:



              $$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
              .$$



              Not as neat as I'd like it, but there you go.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                If you let: $$t = sqrt1 + x,$$



                and change limits appropriately, Mathematica evaluates it as:



                $$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
                .$$



                Not as neat as I'd like it, but there you go.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  If you let: $$t = sqrt1 + x,$$



                  and change limits appropriately, Mathematica evaluates it as:



                  $$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
                  .$$



                  Not as neat as I'd like it, but there you go.






                  share|cite|improve this answer









                  $endgroup$



                  If you let: $$t = sqrt1 + x,$$



                  and change limits appropriately, Mathematica evaluates it as:



                  $$gamma texterfleft(alpha -frac1beta right) ++fracalpha sqrtbeta ^2+gamma
                  .$$



                  Not as neat as I'd like it, but there you go.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 10 '12 at 12:11









                  DonaghDonagh

                  758




                  758





















                      1












                      $begingroup$

                      I'd start with an integration by parts, which should give you
                      $$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
                      exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
                      Now according to Maple, for $A > 0$
                      $$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
                      1/2,frac rm e^A-2,alpha,sqrt A left(
                      rm erfleft(-sqrt A+alpharight)+1+ left( 1-
                      rm erfleft(sqrt A+alpharight) right) rm e^4,
                      alpha,sqrt A right) sqrt pi sqrt A$$
                      However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Thanks, Robert. I've continued from your suggestion below.
                        $endgroup$
                        – Donagh
                        Dec 10 '12 at 12:12















                      1












                      $begingroup$

                      I'd start with an integration by parts, which should give you
                      $$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
                      exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
                      Now according to Maple, for $A > 0$
                      $$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
                      1/2,frac rm e^A-2,alpha,sqrt A left(
                      rm erfleft(-sqrt A+alpharight)+1+ left( 1-
                      rm erfleft(sqrt A+alpharight) right) rm e^4,
                      alpha,sqrt A right) sqrt pi sqrt A$$
                      However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        Thanks, Robert. I've continued from your suggestion below.
                        $endgroup$
                        – Donagh
                        Dec 10 '12 at 12:12













                      1












                      1








                      1





                      $begingroup$

                      I'd start with an integration by parts, which should give you
                      $$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
                      exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
                      Now according to Maple, for $A > 0$
                      $$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
                      1/2,frac rm e^A-2,alpha,sqrt A left(
                      rm erfleft(-sqrt A+alpharight)+1+ left( 1-
                      rm erfleft(sqrt A+alpharight) right) rm e^4,
                      alpha,sqrt A right) sqrt pi sqrt A$$
                      However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.






                      share|cite|improve this answer









                      $endgroup$



                      I'd start with an integration by parts, which should give you
                      $$ texterf(alpha - 1/beta) gamma - fracgammabeta sqrtpi
                      exp(2alpha/beta - 1/beta^2) int_0^infty expleft(-(1/beta^2+1/gamma) x - alpha^2/(1+x) right) fracalpha beta + 1 + x(1+x)^3/2 dx$$
                      Now according to Maple, for $A > 0$
                      $$ int_0^infty exp(-A x - alpha^2/(1+x)) dfracdx(1+x)^1/2 =
                      1/2,frac rm e^A-2,alpha,sqrt A left(
                      rm erfleft(-sqrt A+alpharight)+1+ left( 1-
                      rm erfleft(sqrt A+alpharight) right) rm e^4,
                      alpha,sqrt A right) sqrt pi sqrt A$$
                      However, I wasn't able to get a closed form for the integral with $(1+x)^3/2$ instead of $(1+x)^1/2$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 10 '12 at 9:52









                      Robert IsraelRobert Israel

                      330k23219473




                      330k23219473











                      • $begingroup$
                        Thanks, Robert. I've continued from your suggestion below.
                        $endgroup$
                        – Donagh
                        Dec 10 '12 at 12:12
















                      • $begingroup$
                        Thanks, Robert. I've continued from your suggestion below.
                        $endgroup$
                        – Donagh
                        Dec 10 '12 at 12:12















                      $begingroup$
                      Thanks, Robert. I've continued from your suggestion below.
                      $endgroup$
                      – Donagh
                      Dec 10 '12 at 12:12




                      $begingroup$
                      Thanks, Robert. I've continued from your suggestion below.
                      $endgroup$
                      – Donagh
                      Dec 10 '12 at 12:12











                      0












                      $begingroup$

                      Let us define:
                      begineqnarray
                      J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
                      &underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
                      endeqnarray

                      Now we differentiate with respect to $alpha$. We have:
                      begineqnarray
                      &&fracpartialpartial alpha J(alpha)=\
                      && intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
                      && frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
                      &&
                      frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
                      left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
                      sqrtB right|_1^infty =\
                      %
                      &&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
                      texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
                      endeqnarray

                      where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
                      $
                      .



                      Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
                      begineqnarray
                      gamma- J(alpha) =
                      %
                      gammacdot (1-erf(alpha-frac1beta)) +
                      fracgamma e^frac1gamma e^-alpha Delta_-2 delta
                      left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
                      fracgamma e^frac1gamma4 delta
                      left(
                      Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
                      right)
                      endeqnarray



                      In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
                      dd = Sqrt[1/b^2 + 1/g];
                      Dm, Dp = 2 -1/b + dd, 1/b + dd;
                      a = Range[0, 2, 0.001];
                      f = Interpolation[
                      Transpose[a,
                      NIntegrate[
                      Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
                      Infinity] & /@ a]]



                      In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
                      f'[a]
                      E^(1/g)/Sqrt[
                      1/b^2 + 1/
                      g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
                      a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
                      E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
                      E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])

                      g - f[a]


                      g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
                      2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
                      4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])


                      Out[447]= 0.648692

                      Out[448]= 0.648691540832040074541903643440002542062490436

                      Out[449]= 0.681556

                      Out[450]= 0.681555757815934967025234698639289684849178686





                      share|cite|improve this answer









                      $endgroup$

















                        0












                        $begingroup$

                        Let us define:
                        begineqnarray
                        J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
                        &underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
                        endeqnarray

                        Now we differentiate with respect to $alpha$. We have:
                        begineqnarray
                        &&fracpartialpartial alpha J(alpha)=\
                        && intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
                        && frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
                        &&
                        frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
                        left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
                        sqrtB right|_1^infty =\
                        %
                        &&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
                        texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
                        endeqnarray

                        where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
                        $
                        .



                        Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
                        begineqnarray
                        gamma- J(alpha) =
                        %
                        gammacdot (1-erf(alpha-frac1beta)) +
                        fracgamma e^frac1gamma e^-alpha Delta_-2 delta
                        left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
                        fracgamma e^frac1gamma4 delta
                        left(
                        Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
                        right)
                        endeqnarray



                        In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
                        dd = Sqrt[1/b^2 + 1/g];
                        Dm, Dp = 2 -1/b + dd, 1/b + dd;
                        a = Range[0, 2, 0.001];
                        f = Interpolation[
                        Transpose[a,
                        NIntegrate[
                        Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
                        Infinity] & /@ a]]



                        In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
                        f'[a]
                        E^(1/g)/Sqrt[
                        1/b^2 + 1/
                        g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
                        a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
                        E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
                        E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])

                        g - f[a]


                        g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
                        2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
                        4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])


                        Out[447]= 0.648692

                        Out[448]= 0.648691540832040074541903643440002542062490436

                        Out[449]= 0.681556

                        Out[450]= 0.681555757815934967025234698639289684849178686





                        share|cite|improve this answer









                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          Let us define:
                          begineqnarray
                          J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
                          &underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
                          endeqnarray

                          Now we differentiate with respect to $alpha$. We have:
                          begineqnarray
                          &&fracpartialpartial alpha J(alpha)=\
                          && intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
                          && frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
                          &&
                          frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
                          left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
                          sqrtB right|_1^infty =\
                          %
                          &&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
                          texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
                          endeqnarray

                          where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
                          $
                          .



                          Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
                          begineqnarray
                          gamma- J(alpha) =
                          %
                          gammacdot (1-erf(alpha-frac1beta)) +
                          fracgamma e^frac1gamma e^-alpha Delta_-2 delta
                          left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
                          fracgamma e^frac1gamma4 delta
                          left(
                          Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
                          right)
                          endeqnarray



                          In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
                          dd = Sqrt[1/b^2 + 1/g];
                          Dm, Dp = 2 -1/b + dd, 1/b + dd;
                          a = Range[0, 2, 0.001];
                          f = Interpolation[
                          Transpose[a,
                          NIntegrate[
                          Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
                          Infinity] & /@ a]]



                          In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
                          f'[a]
                          E^(1/g)/Sqrt[
                          1/b^2 + 1/
                          g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
                          a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
                          E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
                          E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])

                          g - f[a]


                          g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
                          2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
                          4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])


                          Out[447]= 0.648692

                          Out[448]= 0.648691540832040074541903643440002542062490436

                          Out[449]= 0.681556

                          Out[450]= 0.681555757815934967025234698639289684849178686





                          share|cite|improve this answer









                          $endgroup$



                          Let us define:
                          begineqnarray
                          J(alpha)&:=& intlimits_0^infty erfleft( fracalphasqrt1+x - fracsqrt1+xbeta right) e^-fracxgamma dx\
                          &underbrace=_t=sqrt1+x& intlimits_1^infty erfleft( fracalphat - fractbeta right) e^-fract^2-1gamma 2 t dt
                          endeqnarray

                          Now we differentiate with respect to $alpha$. We have:
                          begineqnarray
                          &&fracpartialpartial alpha J(alpha)=\
                          && intlimits_1^infty frac4sqrtpi e^-(fracalphat - fractbeta)^2 e^-fract^2-1gamma dt =\
                          && frac4sqrtpi e^2 fracalphabeta+frac1gamma intlimits_1^infty e^-left( fracalpha^2t^2 + (frac1beta^2+frac1gamma) t^2right) dt underbrace=_beginarrayrrr A&:=&alpha^2\B&:=&1/beta^2+1/gammaendarray\
                          &&
                          frac4sqrtpi e^2 fracalphabeta+frac1gamma cdot
                          left.fracsqrtpi left(e^-2 sqrtA sqrtB left(1-texterfleft(fracsqrtAt-sqrtB tright)right)+e^2 sqrtA sqrtB left(texterfleft(fracsqrtAt+sqrtB tright)-1right)right)4
                          sqrtB right|_1^infty =\
                          %
                          &&= frace^frac1gsqrtfrac1b^2+frac1g left(e^a left(-Delta_-right) texterfleft(a-sqrtfrac1b^2+frac1gright)-e^a left(Delta_+right)
                          texterfleft(a+sqrtfrac1b^2+frac1gright)+e^a left(-Delta_-right)+e^a left(Delta_+right)right)
                          endeqnarray

                          where $delta:=sqrtfrac1b^2+frac1g$ and $Delta_pm:=2 delta pm frac2b
                          $
                          .



                          Now all we need to do is to integrate over $alpha$. A glimpse at the bottom line above suffices to realize that the anti-derivative with respect to $alpha$ can be easily found using integration by parts. In addition it is also easy to see that $J(infty) = gamma$. Therefore the final result reads:
                          begineqnarray
                          gamma- J(alpha) =
                          %
                          gammacdot (1-erf(alpha-frac1beta)) +
                          fracgamma e^frac1gamma e^-alpha Delta_-2 delta
                          left(frac1beta - fracDelta_-2 e^4 alpha delta +deltaright) +
                          fracgamma e^frac1gamma4 delta
                          left(
                          Delta_+ e^-alpha Delta_- erf(a-delta) + e^alpha Delta_+ Delta_- erf(a+delta)
                          right)
                          endeqnarray



                          In[441]:= b, g = RandomReal[0, 2, 2, WorkingPrecision -> 50];
                          dd = Sqrt[1/b^2 + 1/g];
                          Dm, Dp = 2 -1/b + dd, 1/b + dd;
                          a = Range[0, 2, 0.001];
                          f = Interpolation[
                          Transpose[a,
                          NIntegrate[
                          Erf[#/Sqrt[1 + x] - Sqrt[1 + x]/b] Exp[-x/g], x, 0,
                          Infinity] & /@ a]]



                          In[446]:= a = RandomReal[0, 2, WorkingPrecision -> 50];
                          f'[a]
                          E^(1/g)/Sqrt[
                          1/b^2 + 1/
                          g] (E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) + E^(
                          a (2 /b + 2 Sqrt[1/b^2 + 1/g])) +
                          E^(a (2 /b - 2 Sqrt[1/b^2 + 1/g])) Erf[a - Sqrt[1/b^2 + 1/g]] -
                          E^(a (2 /b + 2 Sqrt[1/b^2 + 1/g])) Erf[a + Sqrt[1/b^2 + 1/g]])

                          g - f[a]


                          g (1 - Erf[a - 1/b]) + (g E^(1/g) E^(-a Dm))/(
                          2 dd) (1/b + E^(4 a Sqrt[1/b^2 + 1/g]) (-Dm/2) + dd) + (g E^(1/g))/(
                          4 dd) ((Dp) E^(-a Dm) Erf[a - dd] + E^(a Dp) (Dm) Erf[a + dd])


                          Out[447]= 0.648692

                          Out[448]= 0.648691540832040074541903643440002542062490436

                          Out[449]= 0.681556

                          Out[450]= 0.681555757815934967025234698639289684849178686






                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 21 at 18:12









                          PrzemoPrzemo

                          4,65811032




                          4,65811032



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f255322%2fadvice-on-an-integral-involving-the-error-function%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                              random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                              Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye