What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$
What does the Rambam mean when he says that the planets have souls?
How will losing mobility of one hand affect my career as a programmer?
Fly on a jet pack vs fly with a jet pack?
My friend sent me a screenshot of a transaction hash, but when I search for it I find divergent data. What happened?
Could the E-bike drivetrain wear down till needing replacement after 400 km?
Drawing ramified coverings with tikz
Divine apple island
What does this horizontal bar at the first measure mean?
A Permanent Norse Presence in America
What linear sensor for a keyboard?
Can I use my Chinese passport to enter China after I acquired another citizenship?
How much character growth crosses the line into breaking the character
Is it possible to have a strip of cold climate in the middle of a planet?
Does having a TSA Pre-Check member in your flight reservation increase the chances that everyone gets Pre-Check?
Why does Async/Await work properly when the loop is inside the async function and not the other way around?
Why do IPv6 unique local addresses have to have a /48 prefix?
Varistor? Purpose and principle
Could solar power be utilized and substitute coal in the 19th Century
Did arcade monitors have same pixel aspect ratio as TV sets?
Reply 'no position' while the job posting is still there
How do I repair my stair bannister?
Folder comparison
Is camera lens focus an exact point or a range?
Confusion on Parallelogram
What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?
Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$
$begingroup$
$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt4x-4=2sqrtx-1$
$displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $
So how do I remove what causes the hole function not to become $frac00$ and solve the limit?
limits
$endgroup$
add a comment |
$begingroup$
$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt4x-4=2sqrtx-1$
$displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $
So how do I remove what causes the hole function not to become $frac00$ and solve the limit?
limits
$endgroup$
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
$begingroup$
$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt4x-4=2sqrtx-1$
$displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $
So how do I remove what causes the hole function not to become $frac00$ and solve the limit?
limits
$endgroup$
$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt4x-4=2sqrtx-1$
$displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $
So how do I remove what causes the hole function not to become $frac00$ and solve the limit?
limits
limits
edited Mar 16 at 11:36
egreg
185k1486206
185k1486206
asked Mar 16 at 8:01
AquamanAquaman
133
133
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$
$endgroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$
edited Mar 17 at 6:13
answered Mar 16 at 8:04
Paras KhoslaParas Khosla
2,643323
2,643323
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$
$endgroup$
add a comment |
$begingroup$
I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$
$endgroup$
add a comment |
$begingroup$
I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$
$endgroup$
I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$
answered Mar 16 at 8:08
farruhotafarruhota
21.5k2842
21.5k2842
add a comment |
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
$$
$endgroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
$$
answered Mar 16 at 11:39
egregegreg
185k1486206
185k1486206
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09