What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$

What does the Rambam mean when he says that the planets have souls?

How will losing mobility of one hand affect my career as a programmer?

Fly on a jet pack vs fly with a jet pack?

My friend sent me a screenshot of a transaction hash, but when I search for it I find divergent data. What happened?

Could the E-bike drivetrain wear down till needing replacement after 400 km?

Drawing ramified coverings with tikz

Divine apple island

What does this horizontal bar at the first measure mean?

A Permanent Norse Presence in America

What linear sensor for a keyboard?

Can I use my Chinese passport to enter China after I acquired another citizenship?

How much character growth crosses the line into breaking the character

Is it possible to have a strip of cold climate in the middle of a planet?

Does having a TSA Pre-Check member in your flight reservation increase the chances that everyone gets Pre-Check?

Why does Async/Await work properly when the loop is inside the async function and not the other way around?

Why do IPv6 unique local addresses have to have a /48 prefix?

Varistor? Purpose and principle

Could solar power be utilized and substitute coal in the 19th Century

Did arcade monitors have same pixel aspect ratio as TV sets?

Reply 'no position' while the job posting is still there

How do I repair my stair bannister?

Folder comparison

Is camera lens focus an exact point or a range?

Confusion on Parallelogram



What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?


Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$













1












$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09















1












$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09













1












1








1





$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$




$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 16 at 11:36









egreg

185k1486206




185k1486206










asked Mar 16 at 8:01









AquamanAquaman

133




133











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09
















  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09















$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04




$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04












$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05




$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05












$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09




$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09










3 Answers
3






active

oldest

votes


















2












$begingroup$

The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you sure? I am not!
    $endgroup$
    – Aquaman
    Mar 16 at 8:04










  • $begingroup$
    I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
    $endgroup$
    – Aquaman
    Mar 16 at 8:06










  • $begingroup$
    I think that we have to simplify the function then solve it!
    $endgroup$
    – Aquaman
    Mar 16 at 8:07










  • $begingroup$
    AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
    $endgroup$
    – Aquaman
    Mar 16 at 8:12










  • $begingroup$
    Ok @Aquaman I've edited my answer too. Cheers:- ))
    $endgroup$
    – Paras Khosla
    Mar 16 at 8:14


















2












$begingroup$

I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
    $$
    lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
    lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
    $$






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14















      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14













      2












      2








      2





      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$



      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 17 at 6:13

























      answered Mar 16 at 8:04









      Paras KhoslaParas Khosla

      2,643323




      2,643323











      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14
















      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14















      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04




      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04












      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06




      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06












      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07




      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07












      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12




      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12












      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14




      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14











      2












      $begingroup$

      I assume:
      $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
      lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        I assume:
        $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
        lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          I assume:
          $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
          lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






          share|cite|improve this answer









          $endgroup$



          I assume:
          $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
          lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 16 at 8:08









          farruhotafarruhota

          21.5k2842




          21.5k2842





















              0












              $begingroup$

              Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
              $$
              lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
              lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
              $$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                $$
                lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                $$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                  lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                  lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 16 at 11:39









                  egregegreg

                  185k1486206




                  185k1486206



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                      Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                      Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers