What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$

What does the Rambam mean when he says that the planets have souls?

How will losing mobility of one hand affect my career as a programmer?

Fly on a jet pack vs fly with a jet pack?

My friend sent me a screenshot of a transaction hash, but when I search for it I find divergent data. What happened?

Could the E-bike drivetrain wear down till needing replacement after 400 km?

Drawing ramified coverings with tikz

Divine apple island

What does this horizontal bar at the first measure mean?

A Permanent Norse Presence in America

What linear sensor for a keyboard?

Can I use my Chinese passport to enter China after I acquired another citizenship?

How much character growth crosses the line into breaking the character

Is it possible to have a strip of cold climate in the middle of a planet?

Does having a TSA Pre-Check member in your flight reservation increase the chances that everyone gets Pre-Check?

Why does Async/Await work properly when the loop is inside the async function and not the other way around?

Why do IPv6 unique local addresses have to have a /48 prefix?

Varistor? Purpose and principle

Could solar power be utilized and substitute coal in the 19th Century

Did arcade monitors have same pixel aspect ratio as TV sets?

Reply 'no position' while the job posting is still there

How do I repair my stair bannister?

Folder comparison

Is camera lens focus an exact point or a range?

Confusion on Parallelogram



What is the value of $lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1$?


Finding the limit of $fracsqrtxsqrtx+sinsqrtx$Calculate $lim_x to infty x - sqrtx^2 + 2x$ without derivationsFind $lim_xto-inftyfracxsqrtx^2+2$Find $lim_nto inftysqrt[n]fracsum_i=1^p a_i^np$Find the value of : $lim_xtoinftyfracsqrtx-1 - sqrtx-2sqrtx-2 - sqrtx-3$Find the limit $lim_t to 9 frac3-sqrtt9-t$$lim_n to infty fracsqrt1 + sqrt2 + … + sqrtnnsqrtn$Find: $lim_xtoinfty fracsqrtxsqrtx+sqrtx+sqrtx.$How to solve $lim_xto1=fracx^2+x-21-sqrtx$?finding value of $lim_nrightarrow inftysqrt[n]frac(27)^n(n!)^3(3n)!$













1












$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09















1












$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09













1












1








1





$begingroup$


$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?










share|cite|improve this question











$endgroup$




$$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = ?$$



I have done these steps to find the answer:



  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt4x-4=2sqrtx-1$


  3. $displaystylelim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrt (x+1)(x-1) +x-1 2sqrtx-1 + (x+1)(x-1) $


So how do I remove what causes the hole function not to become $frac00$ and solve the limit?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 16 at 11:36









egreg

185k1486206




185k1486206










asked Mar 16 at 8:01









AquamanAquaman

133




133











  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09
















  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09















$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04




$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04












$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05




$begingroup$
Did you mean $$lim_x to 1^+ fracsqrtx^2-1+x-1 sqrt4x-4+x^2-1 ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05












$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09




$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09










3 Answers
3






active

oldest

votes


















2












$begingroup$

The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



$$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Are you sure? I am not!
    $endgroup$
    – Aquaman
    Mar 16 at 8:04










  • $begingroup$
    I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
    $endgroup$
    – Aquaman
    Mar 16 at 8:06










  • $begingroup$
    I think that we have to simplify the function then solve it!
    $endgroup$
    – Aquaman
    Mar 16 at 8:07










  • $begingroup$
    AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
    $endgroup$
    – Aquaman
    Mar 16 at 8:12










  • $begingroup$
    Ok @Aquaman I've edited my answer too. Cheers:- ))
    $endgroup$
    – Paras Khosla
    Mar 16 at 8:14


















2












$begingroup$

I assume:
$$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
    $$
    lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
    lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
    $$






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14















      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14













      2












      2








      2





      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$






      share|cite|improve this answer











      $endgroup$



      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_xto 1^+dfracsqrtx^2-1+x+1sqrt4x-4+x^2-1to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf




      After the OP's edit: $$dfracsqrtx^2-1+x-12sqrtx-1+x^2-1=dfracsqrtx-1sqrtx-1cdotdfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1) \ implies lim_xto 1^+dfracsqrtx+1+sqrtx-12+(x-1)^3/2(x+1)to dfracsqrt22$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 17 at 6:13

























      answered Mar 16 at 8:04









      Paras KhoslaParas Khosla

      2,643323




      2,643323











      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14
















      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14















      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04




      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04












      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06




      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06












      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07




      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07












      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12




      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12












      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14




      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14











      2












      $begingroup$

      I assume:
      $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
      lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        I assume:
        $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
        lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          I assume:
          $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
          lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$






          share|cite|improve this answer









          $endgroup$



          I assume:
          $$lim_x to 1^+ fracsqrtx^2-1+xcolorred-1 sqrt4x-4+x^2-1 = lim_x to 1^+ fracsqrtx-1cdot sqrtx+1+(sqrtx-1)^2 sqrt4x-4+(sqrtx-1)^2(x+1) =\
          lim_x to 1^+ fracsqrtx-1cdot (sqrtx+1+sqrtx-1)sqrtx-1cdot (2+(sqrtx-1)(x+1)) =fracsqrt22.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 16 at 8:08









          farruhotafarruhota

          21.5k2842




          21.5k2842





















              0












              $begingroup$

              Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
              $$
              lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
              lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
              $$






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                $$
                lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                $$






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                  lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_tto0^+fractsqrtt^2+2+t^22t+t^2(t^2+2)=
                  lim_tto0^+fracsqrtt^2+2+t2+t(t^2+2)
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 16 at 11:39









                  egregegreg

                  185k1486206




                  185k1486206



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                      random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                      Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye