True or false? Then $x_n/y_n$ $rightarrow$ 0.Show that $x_n rightarrow 0$Inequality for $|f(x_n)-f(x_n+(y_n-x_n)|$.Lim inf $ (x_n + y_n)$ less than or equal to lim inf $x_n +$ lim sup $y_n$Shouldn't $liminf(x_n)+liminf(y_n)=liminf(x_n+y_n)$ always hold true?True or false: problems on sequencesAs $left| x_n - y_n right|<frac1n$ and $x_n to pi$ then $y_nto pi$Let $x_n, y_n in mathbbR$, $lim x_n=a$, $lim y_n = b$ then $|x_n-b|<r<|y_n-a| forall n implies r = |a-b|$Convergence of $(x_n)$, $(x_n + y_n)$ and $(y_n)$Prove that if $x_n leq y_n, forall n$ then the same inequality holds for their limits, i.e. $xleq y$Let $z_n = x_n + y_n$, with $(x_n)$ and $(y_n)$ strictly increasing. Prove that if $(z_n)$ is bounded above, then so are $(x_n)$ and $(y_n)$.

PTIJ: Who should I vote for? (21st Knesset Edition)

Error in Twin Prime Conjecture

How Could an Airship Be Repaired Mid-Flight

My adviser wants to be the first author

Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?

Who is flying the vertibirds?

Define, (actually define) the "stability" and "energy" of a compound

Sailing the cryptic seas

How do I hide Chekhov's Gun?

Why did it take so long to abandon sail after steamships were demonstrated?

Why is the President allowed to veto a cancellation of emergency powers?

how to write formula in word in latex

Life insurance that covers only simultaneous/dual deaths

Can I use USB data pins as power source

If I can solve Sudoku can I solve Travelling Salesman Problem(TSP)? If yes, how?

How to write cleanly even if my character uses expletive language?

Is it possible to upcast ritual spells?

Why Choose Less Effective Armour Types?

What do Xenomorphs eat in the Alien series?

Does Wild Magic Surge trigger off of spells on the Sorcerer spell list, if I learned them from another class?

What options are left, if Britain cannot decide?

Have researchers managed to "reverse time"? If so, what does that mean for physics?

A Cautionary Suggestion

A sequence that has integer values for prime indexes only:



True or false? Then $x_n/y_n$ $rightarrow$ 0.


Show that $x_n rightarrow 0$Inequality for $|f(x_n)-f(x_n+(y_n-x_n)|$.Lim inf $ (x_n + y_n)$ less than or equal to lim inf $x_n +$ lim sup $y_n$Shouldn't $liminf(x_n)+liminf(y_n)=liminf(x_n+y_n)$ always hold true?True or false: problems on sequencesAs $left| x_n - y_n right|<frac1n$ and $x_n to pi$ then $y_nto pi$Let $x_n, y_n in mathbbR$, $lim x_n=a$, $lim y_n = b$ then $|x_n-b|<r<|y_n-a| forall n implies r = |a-b|$Convergence of $(x_n)$, $(x_n + y_n)$ and $(y_n)$Prove that if $x_n leq y_n, forall n$ then the same inequality holds for their limits, i.e. $xleq y$Let $z_n = x_n + y_n$, with $(x_n)$ and $(y_n)$ strictly increasing. Prove that if $(z_n)$ is bounded above, then so are $(x_n)$ and $(y_n)$.













0












$begingroup$


Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$



True or false? Then $x_n/y_n$ $rightarrow$ 0.



This is what I have:



Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.



Would this be correct or do I have errors? if I have errors how do I fix it?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Huh? What are the hypotheses?
    $endgroup$
    – Randall
    Mar 11 at 21:01










  • $begingroup$
    OP this is written quite unclearly.
    $endgroup$
    – Mike
    Mar 11 at 21:03










  • $begingroup$
    you don't tell us what xn or yn are
    $endgroup$
    – user29418
    Mar 11 at 21:05










  • $begingroup$
    It is fixed... sorry
    $endgroup$
    – user597188
    Mar 11 at 21:05















0












$begingroup$


Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$



True or false? Then $x_n/y_n$ $rightarrow$ 0.



This is what I have:



Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.



Would this be correct or do I have errors? if I have errors how do I fix it?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    Huh? What are the hypotheses?
    $endgroup$
    – Randall
    Mar 11 at 21:01










  • $begingroup$
    OP this is written quite unclearly.
    $endgroup$
    – Mike
    Mar 11 at 21:03










  • $begingroup$
    you don't tell us what xn or yn are
    $endgroup$
    – user29418
    Mar 11 at 21:05










  • $begingroup$
    It is fixed... sorry
    $endgroup$
    – user597188
    Mar 11 at 21:05













0












0








0





$begingroup$


Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$



True or false? Then $x_n/y_n$ $rightarrow$ 0.



This is what I have:



Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.



Would this be correct or do I have errors? if I have errors how do I fix it?










share|cite|improve this question











$endgroup$




Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$



True or false? Then $x_n/y_n$ $rightarrow$ 0.



This is what I have:



Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.



Would this be correct or do I have errors? if I have errors how do I fix it?







analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 21:05







user597188

















asked Mar 11 at 21:01









user597188user597188

234




234







  • 2




    $begingroup$
    Huh? What are the hypotheses?
    $endgroup$
    – Randall
    Mar 11 at 21:01










  • $begingroup$
    OP this is written quite unclearly.
    $endgroup$
    – Mike
    Mar 11 at 21:03










  • $begingroup$
    you don't tell us what xn or yn are
    $endgroup$
    – user29418
    Mar 11 at 21:05










  • $begingroup$
    It is fixed... sorry
    $endgroup$
    – user597188
    Mar 11 at 21:05












  • 2




    $begingroup$
    Huh? What are the hypotheses?
    $endgroup$
    – Randall
    Mar 11 at 21:01










  • $begingroup$
    OP this is written quite unclearly.
    $endgroup$
    – Mike
    Mar 11 at 21:03










  • $begingroup$
    you don't tell us what xn or yn are
    $endgroup$
    – user29418
    Mar 11 at 21:05










  • $begingroup$
    It is fixed... sorry
    $endgroup$
    – user597188
    Mar 11 at 21:05







2




2




$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01




$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01












$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03




$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03












$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05




$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05












$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05




$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144243%2ftrue-or-false-then-x-n-y-n-rightarrow-0%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144243%2ftrue-or-false-then-x-n-y-n-rightarrow-0%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye