True or false? Then $x_n/y_n$ $rightarrow$ 0.Show that $x_n rightarrow 0$Inequality for $|f(x_n)-f(x_n+(y_n-x_n)|$.Lim inf $ (x_n + y_n)$ less than or equal to lim inf $x_n +$ lim sup $y_n$Shouldn't $liminf(x_n)+liminf(y_n)=liminf(x_n+y_n)$ always hold true?True or false: problems on sequencesAs $left| x_n - y_n right|<frac1n$ and $x_n to pi$ then $y_nto pi$Let $x_n, y_n in mathbbR$, $lim x_n=a$, $lim y_n = b$ then $|x_n-b|<r<|y_n-a| forall n implies r = |a-b|$Convergence of $(x_n)$, $(x_n + y_n)$ and $(y_n)$Prove that if $x_n leq y_n, forall n$ then the same inequality holds for their limits, i.e. $xleq y$Let $z_n = x_n + y_n$, with $(x_n)$ and $(y_n)$ strictly increasing. Prove that if $(z_n)$ is bounded above, then so are $(x_n)$ and $(y_n)$.
PTIJ: Who should I vote for? (21st Knesset Edition)
Error in Twin Prime Conjecture
How Could an Airship Be Repaired Mid-Flight
My adviser wants to be the first author
Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?
Who is flying the vertibirds?
Define, (actually define) the "stability" and "energy" of a compound
Sailing the cryptic seas
How do I hide Chekhov's Gun?
Why did it take so long to abandon sail after steamships were demonstrated?
Why is the President allowed to veto a cancellation of emergency powers?
how to write formula in word in latex
Life insurance that covers only simultaneous/dual deaths
Can I use USB data pins as power source
If I can solve Sudoku can I solve Travelling Salesman Problem(TSP)? If yes, how?
How to write cleanly even if my character uses expletive language?
Is it possible to upcast ritual spells?
Why Choose Less Effective Armour Types?
What do Xenomorphs eat in the Alien series?
Does Wild Magic Surge trigger off of spells on the Sorcerer spell list, if I learned them from another class?
What options are left, if Britain cannot decide?
Have researchers managed to "reverse time"? If so, what does that mean for physics?
A Cautionary Suggestion
A sequence that has integer values for prime indexes only:
True or false? Then $x_n/y_n$ $rightarrow$ 0.
Show that $x_n rightarrow 0$Inequality for $|f(x_n)-f(x_n+(y_n-x_n)|$.Lim inf $ (x_n + y_n)$ less than or equal to lim inf $x_n +$ lim sup $y_n$Shouldn't $liminf(x_n)+liminf(y_n)=liminf(x_n+y_n)$ always hold true?True or false: problems on sequencesAs $left| x_n - y_n right|<frac1n$ and $x_n to pi$ then $y_nto pi$Let $x_n, y_n in mathbbR$, $lim x_n=a$, $lim y_n = b$ then $|x_n-b|<r<|y_n-a| forall n implies r = |a-b|$Convergence of $(x_n)$, $(x_n + y_n)$ and $(y_n)$Prove that if $x_n leq y_n, forall n$ then the same inequality holds for their limits, i.e. $xleq y$Let $z_n = x_n + y_n$, with $(x_n)$ and $(y_n)$ strictly increasing. Prove that if $(z_n)$ is bounded above, then so are $(x_n)$ and $(y_n)$.
$begingroup$
Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$
True or false? Then $x_n/y_n$ $rightarrow$ 0.
This is what I have:
Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.
Would this be correct or do I have errors? if I have errors how do I fix it?
analysis
$endgroup$
add a comment |
$begingroup$
Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$
True or false? Then $x_n/y_n$ $rightarrow$ 0.
This is what I have:
Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.
Would this be correct or do I have errors? if I have errors how do I fix it?
analysis
$endgroup$
2
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05
add a comment |
$begingroup$
Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$
True or false? Then $x_n/y_n$ $rightarrow$ 0.
This is what I have:
Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.
Would this be correct or do I have errors? if I have errors how do I fix it?
analysis
$endgroup$
Suppose that $x_n$ is bounded, $y_n$>0 for all n, and $y_n$ $rightarrow$ + $infty$
True or false? Then $x_n/y_n$ $rightarrow$ 0.
This is what I have:
Given $bigx_nbig$ is bounded, let $epsilon>$0 there $exists$ $M>0$, M$in$ $mathbbN$ st $|x_n|leq$ M $forall$ n $in$ $mathbbN$. Then, $fracepsilonM$>0 and $exists$ $M_0$ $in$ $mathbbN$ st $|frac1y_n|<$ $fracepsilonM$ for all n $geq$ $M_0$. Then $|fracx_ny_n-0|$= $|fracx_ny_n|$ $leq$ $fracM$ =$fracM$ < M* $fracepsilonM$. Divide out the M and $fracM$ < $epsilon$ when n $geq$ $m_0$. Therefore, $|fracx_ny_n-0|$ < $epsilon$ $forall$ n $geq$ $m_0$. So, $lim_ntoinfty$ $fracx_ny_n$ =0 meaning $fracx_ny_n$ $rightarrow$ 0. Therefore, the statement is true.
Would this be correct or do I have errors? if I have errors how do I fix it?
analysis
analysis
edited Mar 11 at 21:05
user597188
asked Mar 11 at 21:01
user597188user597188
234
234
2
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05
add a comment |
2
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05
2
2
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144243%2ftrue-or-false-then-x-n-y-n-rightarrow-0%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3144243%2ftrue-or-false-then-x-n-y-n-rightarrow-0%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Huh? What are the hypotheses?
$endgroup$
– Randall
Mar 11 at 21:01
$begingroup$
OP this is written quite unclearly.
$endgroup$
– Mike
Mar 11 at 21:03
$begingroup$
you don't tell us what xn or yn are
$endgroup$
– user29418
Mar 11 at 21:05
$begingroup$
It is fixed... sorry
$endgroup$
– user597188
Mar 11 at 21:05