Taylor expansion of imaginary part?-Doable or not?Taylor series expansion of $sin(2x^2)$Evaluating $ln(cos x))$ using Taylor expansionFind the Taylor Series expansion of the given analytic functionTheoretical Question regarding Taylor ExpansionA Taylor series expansion of $e^ix$Taylor expansion of a matrix to scalar functionVariance of infinitesimal term in Taylor expansionPower series proof without TaylorError bounds of Taylor Expansion for SineMultidimensional complex Taylor expansion and real and imaginary part separation
Bash - pair each line of file
In Aliens, how many people were on LV-426 before the Marines arrived?
두음법칙 - When did North and South diverge in pronunciation of initial ㄹ?
Am I eligible for the Eurail Youth pass? I am 27.5 years old
World War I as a war of liberals against authoritarians?
I got the following comment from a reputed math journal. What does it mean?
If "dar" means "to give", what does "daros" mean?
Why is there so much iron?
What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?
Using Past-Perfect interchangeably with the Past Continuous
What (if any) is the reason to buy in small local stores?
Brake pads destroying wheels
Maths symbols and unicode-math input inside siunitx commands
Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?
Calculate the frequency of characters in a string
I seem to dance, I am not a dancer. Who am I?
Recruiter wants very extensive technical details about all of my previous work
Inhabiting Mars versus going straight for a Dyson swarm
What is the significance behind "40 days" that often appears in the Bible?
Asserting that Atheism and Theism are both faith based positions
Help prove this basic trig identity please!
Is it insecure to send a password in a `curl` command?
Why is indicated airspeed rather than ground speed used during the takeoff roll?
What does "^L" mean in C?
Taylor expansion of imaginary part?-Doable or not?
Taylor series expansion of $sin(2x^2)$Evaluating $ln(cos x))$ using Taylor expansionFind the Taylor Series expansion of the given analytic functionTheoretical Question regarding Taylor ExpansionA Taylor series expansion of $e^ix$Taylor expansion of a matrix to scalar functionVariance of infinitesimal term in Taylor expansionPower series proof without TaylorError bounds of Taylor Expansion for SineMultidimensional complex Taylor expansion and real and imaginary part separation
$begingroup$
I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$
You can assume furthermore that $rle a+2.$
I then define the expressions
$$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$
The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.
Let me finish with a quote of encouragement:
Mark Twain — 'They did not know it was impossible so they did it'
real-analysis calculus complex-analysis functional-analysis
$endgroup$
add a comment |
$begingroup$
I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$
You can assume furthermore that $rle a+2.$
I then define the expressions
$$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$
The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.
Let me finish with a quote of encouragement:
Mark Twain — 'They did not know it was impossible so they did it'
real-analysis calculus complex-analysis functional-analysis
$endgroup$
add a comment |
$begingroup$
I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$
You can assume furthermore that $rle a+2.$
I then define the expressions
$$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$
The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.
Let me finish with a quote of encouragement:
Mark Twain — 'They did not know it was impossible so they did it'
real-analysis calculus complex-analysis functional-analysis
$endgroup$
I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$
You can assume furthermore that $rle a+2.$
I then define the expressions
$$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$
The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.
Let me finish with a quote of encouragement:
Mark Twain — 'They did not know it was impossible so they did it'
real-analysis calculus complex-analysis functional-analysis
real-analysis calculus complex-analysis functional-analysis
edited Mar 6 at 10:09
Sascha
asked Jan 8 at 16:43
SaschaSascha
88318
88318
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.
Firstly write:
$ z = a + r exp(ipi)exp(-iepsilon)$.
Then realize: $z(epsilon = 0 ) = a -r$ and
$fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$
We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:
$$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$
Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.
And now do the first order term:
$$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$
The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.
Putting it all together we get:
$$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
In case $a -2 le r le a+2$ we get:
$$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$
and in case $r le a-2$:
$$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.
$endgroup$
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
|
show 2 more comments
$begingroup$
$textbfFull Edition.$
$colorbrowntextbfExact expression of the imaginary part.$
Denote
$$z_1 = y = u+iv,$$
then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
$$y^2-zy+1=0tag1,$$
$$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
begincases
u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
endcases
begincases
u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
- left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
endcases
$$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
or
$$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
where
$$t=2v-rsinvarepsilon.tag2.2$$
Discriminant of the biquadratic equation $(2.1)$ is
$$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
and the explicit expression for $v(varepsilon)$ is
$$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$
From $(2.1)$ follows that
$$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
I.e. real Taylor series for the other solutions cannot be built.
$colorbrowntextbfData transformations.$
Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.
At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.
Firstly, let us present $(2)$ via superposition in the form of
$$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
where
$$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
beginalign
&b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
,\[4pt]
&c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
& = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endalign
$$begincases
b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endcasestag5.2$$
Will be built Maclaurin series $t(p)$ with
$$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$
Required derivatives will be obtained through differentiation of $g(t,p),$
i.e. the expression $(5).$
$colorbrowntextbfImplicit differentiation.$
Denote
$$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$
Taking in account that
$$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
&dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
= varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$
repeated re-differentiation of $(5.1)$ becames simple:
$$beginaligned
&dfrac dgdp = g_10t'+g_01,\[4pt]
&dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
= Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
&= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
&dfrac d^3gdp^3
= dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
&= (g_10t'''+g_20t't''+g_11t'')
+(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
&+2(g_11t''+g_21t'^,2+g_12t')
+(g_12t'+g_03)\[4pt]
&= g_10t''' +3g_20t't'' +3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
&dfrac d^4gdp^4
= dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
&= (g_10t^IV+g_20t't'''+g_11t''')
+3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
&+3(g_11t'''+g_21t't''+g_12t'')
+(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
&+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
+3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
&= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
+6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
&+g_40t'^,4+4g_31t'^,3
+6g_22t'^,2+4g_13t'+g_04dots
endalignedtag7.2$$
Partial derivatives in the point $(t_0,0)$ can be calculated by formula
$$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
where $delta_ij$ is Kronecker symbol,
$$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
=beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
=beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$
$$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
=beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
=beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$
The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
$$left[beginmatrix
g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
i=3 & 24t_0 & 0 &&&& \
i=4 & 24 & &&&& \
endmatrixright]tag9$$
All the other derivatives' values $g_ij(t_0,0)$ equal to zero.
$colorbrowntextbfDerivatives for the series.$
Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of
$$beginaligned
&dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
&dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
&+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
endalignedtag10$$
The system $(10)$ allows to get the explicit expressions for the required derivatives
$$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$
There are
$$beginaligned
&tau_1 = - dfracg_01g_10,\[4pt]
&tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
&tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
+g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
&tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
+g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
&dots,
endalignedtag12$$
wherein all unzero values $g_ij$ are defined in the table $(9).$
Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.
$colorbrowntextbfMaclaurin series of 9th order.$
Obtained series has the form of
$$beginalign
&t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
&= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
+frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
&+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
= t_0 + frac12tau_1varepsilon^2 \[4pt]
&+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
+frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
endalign$$
Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
$$beginalign
&v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
= pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
& pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
- frac r10080varepsilon^7
pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
&+ frac r362880varepsilon^9+dots
endalign$$
Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.
Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.
$endgroup$
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
|
show 3 more comments
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066407%2ftaylor-expansion-of-imaginary-part-doable-or-not%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.
Firstly write:
$ z = a + r exp(ipi)exp(-iepsilon)$.
Then realize: $z(epsilon = 0 ) = a -r$ and
$fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$
We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:
$$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$
Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.
And now do the first order term:
$$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$
The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.
Putting it all together we get:
$$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
In case $a -2 le r le a+2$ we get:
$$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$
and in case $r le a-2$:
$$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.
$endgroup$
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
|
show 2 more comments
$begingroup$
My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.
Firstly write:
$ z = a + r exp(ipi)exp(-iepsilon)$.
Then realize: $z(epsilon = 0 ) = a -r$ and
$fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$
We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:
$$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$
Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.
And now do the first order term:
$$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$
The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.
Putting it all together we get:
$$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
In case $a -2 le r le a+2$ we get:
$$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$
and in case $r le a-2$:
$$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.
$endgroup$
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
|
show 2 more comments
$begingroup$
My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.
Firstly write:
$ z = a + r exp(ipi)exp(-iepsilon)$.
Then realize: $z(epsilon = 0 ) = a -r$ and
$fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$
We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:
$$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$
Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.
And now do the first order term:
$$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$
The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.
Putting it all together we get:
$$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
In case $a -2 le r le a+2$ we get:
$$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$
and in case $r le a-2$:
$$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.
$endgroup$
My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.
Firstly write:
$ z = a + r exp(ipi)exp(-iepsilon)$.
Then realize: $z(epsilon = 0 ) = a -r$ and
$fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$
We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:
$$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$
Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.
And now do the first order term:
$$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$
The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.
Putting it all together we get:
$$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
In case $a -2 le r le a+2$ we get:
$$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$
and in case $r le a-2$:
$$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$
Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.
edited Mar 6 at 12:45
answered Mar 6 at 11:13
Piotr BenedysiukPiotr Benedysiuk
1,344519
1,344519
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
|
show 2 more comments
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:22
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
$endgroup$
– Sascha
Mar 6 at 11:25
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
Indeed, I require a>r+2.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 11:49
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
I am afraid there is no mistake in the question. Can you adapt your answer to the question?
$endgroup$
– Sascha
Mar 6 at 11:54
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
$begingroup$
In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
$endgroup$
– Piotr Benedysiuk
Mar 6 at 12:22
|
show 2 more comments
$begingroup$
$textbfFull Edition.$
$colorbrowntextbfExact expression of the imaginary part.$
Denote
$$z_1 = y = u+iv,$$
then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
$$y^2-zy+1=0tag1,$$
$$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
begincases
u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
endcases
begincases
u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
- left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
endcases
$$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
or
$$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
where
$$t=2v-rsinvarepsilon.tag2.2$$
Discriminant of the biquadratic equation $(2.1)$ is
$$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
and the explicit expression for $v(varepsilon)$ is
$$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$
From $(2.1)$ follows that
$$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
I.e. real Taylor series for the other solutions cannot be built.
$colorbrowntextbfData transformations.$
Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.
At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.
Firstly, let us present $(2)$ via superposition in the form of
$$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
where
$$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
beginalign
&b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
,\[4pt]
&c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
& = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endalign
$$begincases
b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endcasestag5.2$$
Will be built Maclaurin series $t(p)$ with
$$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$
Required derivatives will be obtained through differentiation of $g(t,p),$
i.e. the expression $(5).$
$colorbrowntextbfImplicit differentiation.$
Denote
$$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$
Taking in account that
$$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
&dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
= varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$
repeated re-differentiation of $(5.1)$ becames simple:
$$beginaligned
&dfrac dgdp = g_10t'+g_01,\[4pt]
&dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
= Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
&= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
&dfrac d^3gdp^3
= dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
&= (g_10t'''+g_20t't''+g_11t'')
+(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
&+2(g_11t''+g_21t'^,2+g_12t')
+(g_12t'+g_03)\[4pt]
&= g_10t''' +3g_20t't'' +3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
&dfrac d^4gdp^4
= dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
&= (g_10t^IV+g_20t't'''+g_11t''')
+3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
&+3(g_11t'''+g_21t't''+g_12t'')
+(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
&+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
+3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
&= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
+6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
&+g_40t'^,4+4g_31t'^,3
+6g_22t'^,2+4g_13t'+g_04dots
endalignedtag7.2$$
Partial derivatives in the point $(t_0,0)$ can be calculated by formula
$$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
where $delta_ij$ is Kronecker symbol,
$$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
=beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
=beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$
$$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
=beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
=beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$
The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
$$left[beginmatrix
g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
i=3 & 24t_0 & 0 &&&& \
i=4 & 24 & &&&& \
endmatrixright]tag9$$
All the other derivatives' values $g_ij(t_0,0)$ equal to zero.
$colorbrowntextbfDerivatives for the series.$
Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of
$$beginaligned
&dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
&dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
&+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
endalignedtag10$$
The system $(10)$ allows to get the explicit expressions for the required derivatives
$$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$
There are
$$beginaligned
&tau_1 = - dfracg_01g_10,\[4pt]
&tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
&tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
+g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
&tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
+g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
&dots,
endalignedtag12$$
wherein all unzero values $g_ij$ are defined in the table $(9).$
Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.
$colorbrowntextbfMaclaurin series of 9th order.$
Obtained series has the form of
$$beginalign
&t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
&= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
+frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
&+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
= t_0 + frac12tau_1varepsilon^2 \[4pt]
&+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
+frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
endalign$$
Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
$$beginalign
&v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
= pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
& pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
- frac r10080varepsilon^7
pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
&+ frac r362880varepsilon^9+dots
endalign$$
Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.
Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.
$endgroup$
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
|
show 3 more comments
$begingroup$
$textbfFull Edition.$
$colorbrowntextbfExact expression of the imaginary part.$
Denote
$$z_1 = y = u+iv,$$
then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
$$y^2-zy+1=0tag1,$$
$$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
begincases
u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
endcases
begincases
u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
- left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
endcases
$$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
or
$$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
where
$$t=2v-rsinvarepsilon.tag2.2$$
Discriminant of the biquadratic equation $(2.1)$ is
$$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
and the explicit expression for $v(varepsilon)$ is
$$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$
From $(2.1)$ follows that
$$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
I.e. real Taylor series for the other solutions cannot be built.
$colorbrowntextbfData transformations.$
Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.
At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.
Firstly, let us present $(2)$ via superposition in the form of
$$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
where
$$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
beginalign
&b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
,\[4pt]
&c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
& = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endalign
$$begincases
b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endcasestag5.2$$
Will be built Maclaurin series $t(p)$ with
$$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$
Required derivatives will be obtained through differentiation of $g(t,p),$
i.e. the expression $(5).$
$colorbrowntextbfImplicit differentiation.$
Denote
$$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$
Taking in account that
$$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
&dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
= varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$
repeated re-differentiation of $(5.1)$ becames simple:
$$beginaligned
&dfrac dgdp = g_10t'+g_01,\[4pt]
&dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
= Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
&= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
&dfrac d^3gdp^3
= dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
&= (g_10t'''+g_20t't''+g_11t'')
+(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
&+2(g_11t''+g_21t'^,2+g_12t')
+(g_12t'+g_03)\[4pt]
&= g_10t''' +3g_20t't'' +3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
&dfrac d^4gdp^4
= dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
&= (g_10t^IV+g_20t't'''+g_11t''')
+3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
&+3(g_11t'''+g_21t't''+g_12t'')
+(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
&+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
+3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
&= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
+6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
&+g_40t'^,4+4g_31t'^,3
+6g_22t'^,2+4g_13t'+g_04dots
endalignedtag7.2$$
Partial derivatives in the point $(t_0,0)$ can be calculated by formula
$$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
where $delta_ij$ is Kronecker symbol,
$$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
=beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
=beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$
$$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
=beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
=beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$
The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
$$left[beginmatrix
g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
i=3 & 24t_0 & 0 &&&& \
i=4 & 24 & &&&& \
endmatrixright]tag9$$
All the other derivatives' values $g_ij(t_0,0)$ equal to zero.
$colorbrowntextbfDerivatives for the series.$
Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of
$$beginaligned
&dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
&dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
&+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
endalignedtag10$$
The system $(10)$ allows to get the explicit expressions for the required derivatives
$$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$
There are
$$beginaligned
&tau_1 = - dfracg_01g_10,\[4pt]
&tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
&tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
+g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
&tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
+g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
&dots,
endalignedtag12$$
wherein all unzero values $g_ij$ are defined in the table $(9).$
Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.
$colorbrowntextbfMaclaurin series of 9th order.$
Obtained series has the form of
$$beginalign
&t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
&= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
+frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
&+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
= t_0 + frac12tau_1varepsilon^2 \[4pt]
&+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
+frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
endalign$$
Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
$$beginalign
&v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
= pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
& pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
- frac r10080varepsilon^7
pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
&+ frac r362880varepsilon^9+dots
endalign$$
Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.
Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.
$endgroup$
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
|
show 3 more comments
$begingroup$
$textbfFull Edition.$
$colorbrowntextbfExact expression of the imaginary part.$
Denote
$$z_1 = y = u+iv,$$
then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
$$y^2-zy+1=0tag1,$$
$$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
begincases
u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
endcases
begincases
u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
- left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
endcases
$$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
or
$$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
where
$$t=2v-rsinvarepsilon.tag2.2$$
Discriminant of the biquadratic equation $(2.1)$ is
$$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
and the explicit expression for $v(varepsilon)$ is
$$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$
From $(2.1)$ follows that
$$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
I.e. real Taylor series for the other solutions cannot be built.
$colorbrowntextbfData transformations.$
Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.
At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.
Firstly, let us present $(2)$ via superposition in the form of
$$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
where
$$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
beginalign
&b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
,\[4pt]
&c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
& = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endalign
$$begincases
b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endcasestag5.2$$
Will be built Maclaurin series $t(p)$ with
$$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$
Required derivatives will be obtained through differentiation of $g(t,p),$
i.e. the expression $(5).$
$colorbrowntextbfImplicit differentiation.$
Denote
$$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$
Taking in account that
$$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
&dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
= varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$
repeated re-differentiation of $(5.1)$ becames simple:
$$beginaligned
&dfrac dgdp = g_10t'+g_01,\[4pt]
&dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
= Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
&= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
&dfrac d^3gdp^3
= dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
&= (g_10t'''+g_20t't''+g_11t'')
+(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
&+2(g_11t''+g_21t'^,2+g_12t')
+(g_12t'+g_03)\[4pt]
&= g_10t''' +3g_20t't'' +3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
&dfrac d^4gdp^4
= dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
&= (g_10t^IV+g_20t't'''+g_11t''')
+3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
&+3(g_11t'''+g_21t't''+g_12t'')
+(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
&+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
+3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
&= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
+6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
&+g_40t'^,4+4g_31t'^,3
+6g_22t'^,2+4g_13t'+g_04dots
endalignedtag7.2$$
Partial derivatives in the point $(t_0,0)$ can be calculated by formula
$$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
where $delta_ij$ is Kronecker symbol,
$$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
=beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
=beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$
$$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
=beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
=beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$
The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
$$left[beginmatrix
g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
i=3 & 24t_0 & 0 &&&& \
i=4 & 24 & &&&& \
endmatrixright]tag9$$
All the other derivatives' values $g_ij(t_0,0)$ equal to zero.
$colorbrowntextbfDerivatives for the series.$
Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of
$$beginaligned
&dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
&dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
&+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
endalignedtag10$$
The system $(10)$ allows to get the explicit expressions for the required derivatives
$$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$
There are
$$beginaligned
&tau_1 = - dfracg_01g_10,\[4pt]
&tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
&tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
+g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
&tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
+g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
&dots,
endalignedtag12$$
wherein all unzero values $g_ij$ are defined in the table $(9).$
Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.
$colorbrowntextbfMaclaurin series of 9th order.$
Obtained series has the form of
$$beginalign
&t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
&= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
+frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
&+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
= t_0 + frac12tau_1varepsilon^2 \[4pt]
&+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
+frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
endalign$$
Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
$$beginalign
&v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
= pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
& pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
- frac r10080varepsilon^7
pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
&+ frac r362880varepsilon^9+dots
endalign$$
Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.
Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.
$endgroup$
$textbfFull Edition.$
$colorbrowntextbfExact expression of the imaginary part.$
Denote
$$z_1 = y = u+iv,$$
then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
$$y^2-zy+1=0tag1,$$
$$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
begincases
u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
endcases
begincases
u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
- left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
endcases
$$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
or
$$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
where
$$t=2v-rsinvarepsilon.tag2.2$$
Discriminant of the biquadratic equation $(2.1)$ is
$$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
and the explicit expression for $v(varepsilon)$ is
$$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$
From $(2.1)$ follows that
$$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
I.e. real Taylor series for the other solutions cannot be built.
$colorbrowntextbfData transformations.$
Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.
At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.
Firstly, let us present $(2)$ via superposition in the form of
$$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
where
$$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
beginalign
&b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
,\[4pt]
&c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
& = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endalign
$$begincases
b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
endcasestag5.2$$
Will be built Maclaurin series $t(p)$ with
$$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$
Required derivatives will be obtained through differentiation of $g(t,p),$
i.e. the expression $(5).$
$colorbrowntextbfImplicit differentiation.$
Denote
$$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$
Taking in account that
$$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
&dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
= varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$
repeated re-differentiation of $(5.1)$ becames simple:
$$beginaligned
&dfrac dgdp = g_10t'+g_01,\[4pt]
&dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
= Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
&= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
&dfrac d^3gdp^3
= dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
&= (g_10t'''+g_20t't''+g_11t'')
+(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
&+2(g_11t''+g_21t'^,2+g_12t')
+(g_12t'+g_03)\[4pt]
&= g_10t''' +3g_20t't'' +3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
&dfrac d^4gdp^4
= dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
&= (g_10t^IV+g_20t't'''+g_11t''')
+3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
&+3(g_11t'''+g_21t't''+g_12t'')
+(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
&+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
+3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
&= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
+6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
&+g_40t'^,4+4g_31t'^,3
+6g_22t'^,2+4g_13t'+g_04dots
endalignedtag7.2$$
Partial derivatives in the point $(t_0,0)$ can be calculated by formula
$$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
where $delta_ij$ is Kronecker symbol,
$$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
=beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
=beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$
$$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
=beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
=beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$
The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
$$left[beginmatrix
g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
i=3 & 24t_0 & 0 &&&& \
i=4 & 24 & &&&& \
endmatrixright]tag9$$
All the other derivatives' values $g_ij(t_0,0)$ equal to zero.
$colorbrowntextbfDerivatives for the series.$
Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of
$$beginaligned
&dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
&dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
+g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
&dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
&+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
endalignedtag10$$
The system $(10)$ allows to get the explicit expressions for the required derivatives
$$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$
There are
$$beginaligned
&tau_1 = - dfracg_01g_10,\[4pt]
&tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
&tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
+g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
&tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
+g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
&dots,
endalignedtag12$$
wherein all unzero values $g_ij$ are defined in the table $(9).$
Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.
$colorbrowntextbfMaclaurin series of 9th order.$
Obtained series has the form of
$$beginalign
&t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
&= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
+frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
&+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
= t_0 + frac12tau_1varepsilon^2 \[4pt]
&+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
+frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
endalign$$
Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
$$beginalign
&v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
= pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
& pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
- frac r10080varepsilon^7
pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
&+ frac r362880varepsilon^9+dots
endalign$$
Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.
Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.
edited Mar 13 at 9:53
answered Mar 11 at 17:06
Yuri NegometyanovYuri Negometyanov
12k1729
12k1729
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
|
show 3 more comments
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Ready. Waiting for comments
$endgroup$
– Yuri Negometyanov
Mar 12 at 20:50
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 22:15
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
@PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
$endgroup$
– Yuri Negometyanov
Mar 12 at 22:45
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
$endgroup$
– Piotr Benedysiuk
Mar 12 at 23:05
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
$begingroup$
@PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
$endgroup$
– Yuri Negometyanov
Mar 12 at 23:40
|
show 3 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066407%2ftaylor-expansion-of-imaginary-part-doable-or-not%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown