Taylor expansion of imaginary part?-Doable or not?Taylor series expansion of $sin(2x^2)$Evaluating $ln(cos x))$ using Taylor expansionFind the Taylor Series expansion of the given analytic functionTheoretical Question regarding Taylor ExpansionA Taylor series expansion of $e^ix$Taylor expansion of a matrix to scalar functionVariance of infinitesimal term in Taylor expansionPower series proof without TaylorError bounds of Taylor Expansion for SineMultidimensional complex Taylor expansion and real and imaginary part separation

Bash - pair each line of file

In Aliens, how many people were on LV-426 before the Marines arrived​?

두음법칙 - When did North and South diverge in pronunciation of initial ㄹ?

Am I eligible for the Eurail Youth pass? I am 27.5 years old

World War I as a war of liberals against authoritarians?

I got the following comment from a reputed math journal. What does it mean?

If "dar" means "to give", what does "daros" mean?

Why is there so much iron?

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

Using Past-Perfect interchangeably with the Past Continuous

What (if any) is the reason to buy in small local stores?

Brake pads destroying wheels

Maths symbols and unicode-math input inside siunitx commands

Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?

Calculate the frequency of characters in a string

I seem to dance, I am not a dancer. Who am I?

Recruiter wants very extensive technical details about all of my previous work

Inhabiting Mars versus going straight for a Dyson swarm

What is the significance behind "40 days" that often appears in the Bible?

Asserting that Atheism and Theism are both faith based positions

Help prove this basic trig identity please!

Is it insecure to send a password in a `curl` command?

Why is indicated airspeed rather than ground speed used during the takeoff roll?

What does "^L" mean in C?



Taylor expansion of imaginary part?-Doable or not?


Taylor series expansion of $sin(2x^2)$Evaluating $ln(cos x))$ using Taylor expansionFind the Taylor Series expansion of the given analytic functionTheoretical Question regarding Taylor ExpansionA Taylor series expansion of $e^ix$Taylor expansion of a matrix to scalar functionVariance of infinitesimal term in Taylor expansionPower series proof without TaylorError bounds of Taylor Expansion for SineMultidimensional complex Taylor expansion and real and imaginary part separation













7












$begingroup$


I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$



You can assume furthermore that $rle a+2.$



I then define the expressions



$$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$



The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.



Let me finish with a quote of encouragement:



Mark Twain — 'They did not know it was impossible so they did it'










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$



    You can assume furthermore that $rle a+2.$



    I then define the expressions



    $$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$



    The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.



    Let me finish with a quote of encouragement:



    Mark Twain — 'They did not know it was impossible so they did it'










    share|cite|improve this question











    $endgroup$














      7












      7








      7


      2



      $begingroup$


      I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$



      You can assume furthermore that $rle a+2.$



      I then define the expressions



      $$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$



      The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.



      Let me finish with a quote of encouragement:



      Mark Twain — 'They did not know it was impossible so they did it'










      share|cite|improve this question











      $endgroup$




      I have a number $z = a+re^i(pi-varepsilon)$ and $varepsilon>0$ is small, $a,r>0.$



      You can assume furthermore that $rle a+2.$



      I then define the expressions



      $$z_pm:=frac12 left(zpm sqrtz^2-4 right).$$



      The question is: Can one find a Taylor expansion of the imaginary part of $z_pm$ in terms of $varepsilon$. I would like to know at least what the leading order terms are for $varepsilon$ small.



      Let me finish with a quote of encouragement:



      Mark Twain — 'They did not know it was impossible so they did it'







      real-analysis calculus complex-analysis functional-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 6 at 10:09







      Sascha

















      asked Jan 8 at 16:43









      SaschaSascha

      88318




      88318




















          2 Answers
          2






          active

          oldest

          votes


















          3





          +100







          $begingroup$

          My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.



          Firstly write:
          $ z = a + r exp(ipi)exp(-iepsilon)$.



          Then realize: $z(epsilon = 0 ) = a -r$ and



          $fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$



          We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:



          $$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$



          Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.



          And now do the first order term:
          $$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$



          The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.



          Putting it all together we get:
          $$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          In case $a -2 le r le a+2$ we get:
          $$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$



          and in case $r le a-2$:



          $$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:22










          • $begingroup$
            Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
            $endgroup$
            – Sascha
            Mar 6 at 11:25











          • $begingroup$
            Indeed, I require a>r+2.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:49










          • $begingroup$
            I am afraid there is no mistake in the question. Can you adapt your answer to the question?
            $endgroup$
            – Sascha
            Mar 6 at 11:54










          • $begingroup$
            In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 12:22


















          2












          $begingroup$

          $textbfFull Edition.$



          $colorbrowntextbfExact expression of the imaginary part.$



          Denote
          $$z_1 = y = u+iv,$$
          then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
          $$y^2-zy+1=0tag1,$$
          $$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
          begincases
          u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
          2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
          endcases

          begincases
          u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
          left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
          - left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
          endcases

          $$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
          or
          $$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
          where
          $$t=2v-rsinvarepsilon.tag2.2$$



          Discriminant of the biquadratic equation $(2.1)$ is
          $$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
          and the explicit expression for $v(varepsilon)$ is
          $$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$



          From $(2.1)$ follows that
          $$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
          I.e. real Taylor series for the other solutions cannot be built.



          $colorbrowntextbfData transformations.$



          Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.



          At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.



          Firstly, let us present $(2)$ via superposition in the form of
          $$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
          where
          $$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
          beginalign
          &b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
          ,\[4pt]
          &c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
          & = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endalign

          $$begincases
          b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
          c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endcasestag5.2$$



          Will be built Maclaurin series $t(p)$ with
          $$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$



          Required derivatives will be obtained through differentiation of $g(t,p),$
          i.e. the expression $(5).$



          $colorbrowntextbfImplicit differentiation.$



          Denote
          $$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$



          Taking in account that




          $$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
          &dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
          = varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$




          repeated re-differentiation of $(5.1)$ becames simple:
          $$beginaligned
          &dfrac dgdp = g_10t'+g_01,\[4pt]
          &dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
          = Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
          &= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
          &dfrac d^3gdp^3
          = dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
          &= (g_10t'''+g_20t't''+g_11t'')
          +(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
          &+2(g_11t''+g_21t'^,2+g_12t')
          +(g_12t'+g_03)\[4pt]
          &= g_10t''' +3g_20t't'' +3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
          &dfrac d^4gdp^4
          = dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
          &= (g_10t^IV+g_20t't'''+g_11t''')
          +3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
          &+3(g_11t'''+g_21t't''+g_12t'')
          +(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
          &+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
          +3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
          &= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
          +6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3
          +6g_22t'^,2+4g_13t'+g_04dots
          endalignedtag7.2$$



          Partial derivatives in the point $(t_0,0)$ can be calculated by formula
          $$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
          where $delta_ij$ is Kronecker symbol,
          $$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
          =beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
          beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
          =beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$



          $$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
          =beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
          beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
          =beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$



          The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
          $$left[beginmatrix
          g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
          i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
          i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
          i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
          i=3 & 24t_0 & 0 &&&& \
          i=4 & 24 & &&&& \
          endmatrixright]tag9$$

          All the other derivatives' values $g_ij(t_0,0)$ equal to zero.



          $colorbrowntextbfDerivatives for the series.$



          Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of



          $$beginaligned
          &dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
          &dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
          endalignedtag10$$



          The system $(10)$ allows to get the explicit expressions for the required derivatives
          $$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$



          There are
          $$beginaligned
          &tau_1 = - dfracg_01g_10,\[4pt]
          &tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
          &tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
          +g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
          &tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
          +g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
          &dots,
          endalignedtag12$$

          wherein all unzero values $g_ij$ are defined in the table $(9).$



          Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.



          $colorbrowntextbfMaclaurin series of 9th order.$



          Obtained series has the form of
          $$beginalign
          &t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
          &= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
          +frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
          &+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
          = t_0 + frac12tau_1varepsilon^2 \[4pt]
          &+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
          +frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
          endalign$$



          Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
          $$beginalign
          &v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
          = pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
          & pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
          - frac r10080varepsilon^7
          pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
          &+ frac r362880varepsilon^9+dots
          endalign$$



          Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.



          Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ready. Waiting for comments
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 20:50










          • $begingroup$
            Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 22:15










          • $begingroup$
            @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 22:45










          • $begingroup$
            It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 23:05










          • $begingroup$
            @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 23:40










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066407%2ftaylor-expansion-of-imaginary-part-doable-or-not%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3





          +100







          $begingroup$

          My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.



          Firstly write:
          $ z = a + r exp(ipi)exp(-iepsilon)$.



          Then realize: $z(epsilon = 0 ) = a -r$ and



          $fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$



          We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:



          $$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$



          Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.



          And now do the first order term:
          $$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$



          The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.



          Putting it all together we get:
          $$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          In case $a -2 le r le a+2$ we get:
          $$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$



          and in case $r le a-2$:



          $$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:22










          • $begingroup$
            Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
            $endgroup$
            – Sascha
            Mar 6 at 11:25











          • $begingroup$
            Indeed, I require a>r+2.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:49










          • $begingroup$
            I am afraid there is no mistake in the question. Can you adapt your answer to the question?
            $endgroup$
            – Sascha
            Mar 6 at 11:54










          • $begingroup$
            In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 12:22















          3





          +100







          $begingroup$

          My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.



          Firstly write:
          $ z = a + r exp(ipi)exp(-iepsilon)$.



          Then realize: $z(epsilon = 0 ) = a -r$ and



          $fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$



          We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:



          $$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$



          Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.



          And now do the first order term:
          $$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$



          The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.



          Putting it all together we get:
          $$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          In case $a -2 le r le a+2$ we get:
          $$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$



          and in case $r le a-2$:



          $$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:22










          • $begingroup$
            Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
            $endgroup$
            – Sascha
            Mar 6 at 11:25











          • $begingroup$
            Indeed, I require a>r+2.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:49










          • $begingroup$
            I am afraid there is no mistake in the question. Can you adapt your answer to the question?
            $endgroup$
            – Sascha
            Mar 6 at 11:54










          • $begingroup$
            In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 12:22













          3





          +100







          3





          +100



          3




          +100



          $begingroup$

          My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.



          Firstly write:
          $ z = a + r exp(ipi)exp(-iepsilon)$.



          Then realize: $z(epsilon = 0 ) = a -r$ and



          $fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$



          We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:



          $$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$



          Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.



          And now do the first order term:
          $$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$



          The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.



          Putting it all together we get:
          $$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          In case $a -2 le r le a+2$ we get:
          $$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$



          and in case $r le a-2$:



          $$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.






          share|cite|improve this answer











          $endgroup$



          My approach is based on the fact that $z_pm(epsilon)$ is a function from $mathcalR tomathcalC$ therefore (I THINK, HAVE NOT BEEN ABLE TO FIND PROOF YET) the Taylor expansion of $textIm(z_pm(epsilon))$ is the same as Imaginary part of the Taylor expansion of $z_pm(epsilon)$.



          Firstly write:
          $ z = a + r exp(ipi)exp(-iepsilon)$.



          Then realize: $z(epsilon = 0 ) = a -r$ and



          $fracdzdepsilon|_epsilon = 0 = -irexp(ipi)exp(-iepsilon)|_epsilon = 0 = ir$



          We will now compute the first two terms of the Taylor expansion of $z_pm$ in terms around $epsilon = 0$. We start at zeroth order:



          $$z_pm|_epsilon = 0 =frac12left(a -r pm sqrt(a-r)^2 -4right) = frac12left(a -r pm sqrta -r -2sqrta-r+2right).$$



          Note here that since $r le a + 2$ the second square root is always positive. If also $r le a -2$ then the first square root is positive and the whole term will be reall. In case $a -2 le r le a+2$ we will have a square root of a negative number and thus we will get Imaginary numbers from there. Thus, the leading order term of the expansion will be $epsilon^0$.



          And now do the first order term:
          $$fracdz_pmdepsilon|_epsilon = 0 = frac12left(fracdzdepsilon pm fracdzdepsilon fraczsqrtz^2 - 4right) = fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right)$$



          The same distinction needs to be made here if $a -2 le r le a+2$ the square root will give us imaginary numbers.



          Putting it all together we get:
          $$z_pm(epsilon) approx frac12left(a -r pm sqrt(a-r)^2 -4right) +fracir2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          In case $a -2 le r le a+2$ we get:
          $$textImleft(z_pm(epsilon)right) approx pm frac12left(|sqrta -r -2|sqrta-r+2right) + fracr2epsilon$$



          and in case $r le a-2$:



          $$textImleft(z_pm(epsilon)right) approx fracr2left(1 pm fraca-rsqrt(a-r)^2 -4right) epsilon$$



          Edit: Getting the full expansion shouldn't be too hard once you are aware you can expand $z_pm$ and then take the imaginary part.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 6 at 12:45

























          answered Mar 6 at 11:13









          Piotr BenedysiukPiotr Benedysiuk

          1,344519




          1,344519











          • $begingroup$
            The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:22










          • $begingroup$
            Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
            $endgroup$
            – Sascha
            Mar 6 at 11:25











          • $begingroup$
            Indeed, I require a>r+2.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:49










          • $begingroup$
            I am afraid there is no mistake in the question. Can you adapt your answer to the question?
            $endgroup$
            – Sascha
            Mar 6 at 11:54










          • $begingroup$
            In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 12:22
















          • $begingroup$
            The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:22










          • $begingroup$
            Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
            $endgroup$
            – Sascha
            Mar 6 at 11:25











          • $begingroup$
            Indeed, I require a>r+2.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 11:49










          • $begingroup$
            I am afraid there is no mistake in the question. Can you adapt your answer to the question?
            $endgroup$
            – Sascha
            Mar 6 at 11:54










          • $begingroup$
            In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
            $endgroup$
            – Piotr Benedysiuk
            Mar 6 at 12:22















          $begingroup$
          The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 11:22




          $begingroup$
          The reason why mapping from $R to C$ should obey the Taylor relation I mentioned is because if both $f(x)$ and $textIm(f(x))$ are analytical (meaning the expansion exists) then we must have that the series converge to each other if we look at the Imaginary part due to uniqueness (the same holds for the real part). For functions $C to C$ this does not hold! Say $f(z) =(2+i) z$ then we can't say $Im(f(z)) = Im(2+i) times Im(z)$ because $z$ is an complex number!
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 11:22












          $begingroup$
          Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
          $endgroup$
          – Sascha
          Mar 6 at 11:25





          $begingroup$
          Your result seems to imply that if $r=a$ the $Im(z_pm(varepsilon)) approx fracr2 varepsilon. $ Now, take $r=a$, then I think it becomes apparent that this result cannot be true. Just look at what $z_pm$ is for $varepsilon=0.$
          $endgroup$
          – Sascha
          Mar 6 at 11:25













          $begingroup$
          Indeed, I require a>r+2.
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 11:49




          $begingroup$
          Indeed, I require a>r+2.
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 11:49












          $begingroup$
          I am afraid there is no mistake in the question. Can you adapt your answer to the question?
          $endgroup$
          – Sascha
          Mar 6 at 11:54




          $begingroup$
          I am afraid there is no mistake in the question. Can you adapt your answer to the question?
          $endgroup$
          – Sascha
          Mar 6 at 11:54












          $begingroup$
          In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 12:22




          $begingroup$
          In that case the square root will give us an imaginary number. Then, depending on the value of $a$ and $r$ you will also get an zeroth order contribution. One sec.
          $endgroup$
          – Piotr Benedysiuk
          Mar 6 at 12:22











          2












          $begingroup$

          $textbfFull Edition.$



          $colorbrowntextbfExact expression of the imaginary part.$



          Denote
          $$z_1 = y = u+iv,$$
          then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
          $$y^2-zy+1=0tag1,$$
          $$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
          begincases
          u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
          2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
          endcases

          begincases
          u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
          left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
          - left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
          endcases

          $$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
          or
          $$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
          where
          $$t=2v-rsinvarepsilon.tag2.2$$



          Discriminant of the biquadratic equation $(2.1)$ is
          $$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
          and the explicit expression for $v(varepsilon)$ is
          $$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$



          From $(2.1)$ follows that
          $$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
          I.e. real Taylor series for the other solutions cannot be built.



          $colorbrowntextbfData transformations.$



          Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.



          At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.



          Firstly, let us present $(2)$ via superposition in the form of
          $$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
          where
          $$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
          beginalign
          &b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
          ,\[4pt]
          &c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
          & = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endalign

          $$begincases
          b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
          c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endcasestag5.2$$



          Will be built Maclaurin series $t(p)$ with
          $$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$



          Required derivatives will be obtained through differentiation of $g(t,p),$
          i.e. the expression $(5).$



          $colorbrowntextbfImplicit differentiation.$



          Denote
          $$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$



          Taking in account that




          $$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
          &dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
          = varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$




          repeated re-differentiation of $(5.1)$ becames simple:
          $$beginaligned
          &dfrac dgdp = g_10t'+g_01,\[4pt]
          &dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
          = Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
          &= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
          &dfrac d^3gdp^3
          = dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
          &= (g_10t'''+g_20t't''+g_11t'')
          +(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
          &+2(g_11t''+g_21t'^,2+g_12t')
          +(g_12t'+g_03)\[4pt]
          &= g_10t''' +3g_20t't'' +3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
          &dfrac d^4gdp^4
          = dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
          &= (g_10t^IV+g_20t't'''+g_11t''')
          +3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
          &+3(g_11t'''+g_21t't''+g_12t'')
          +(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
          &+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
          +3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
          &= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
          +6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3
          +6g_22t'^,2+4g_13t'+g_04dots
          endalignedtag7.2$$



          Partial derivatives in the point $(t_0,0)$ can be calculated by formula
          $$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
          where $delta_ij$ is Kronecker symbol,
          $$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
          =beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
          beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
          =beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$



          $$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
          =beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
          beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
          =beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$



          The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
          $$left[beginmatrix
          g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
          i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
          i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
          i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
          i=3 & 24t_0 & 0 &&&& \
          i=4 & 24 & &&&& \
          endmatrixright]tag9$$

          All the other derivatives' values $g_ij(t_0,0)$ equal to zero.



          $colorbrowntextbfDerivatives for the series.$



          Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of



          $$beginaligned
          &dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
          &dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
          endalignedtag10$$



          The system $(10)$ allows to get the explicit expressions for the required derivatives
          $$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$



          There are
          $$beginaligned
          &tau_1 = - dfracg_01g_10,\[4pt]
          &tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
          &tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
          +g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
          &tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
          +g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
          &dots,
          endalignedtag12$$

          wherein all unzero values $g_ij$ are defined in the table $(9).$



          Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.



          $colorbrowntextbfMaclaurin series of 9th order.$



          Obtained series has the form of
          $$beginalign
          &t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
          &= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
          +frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
          &+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
          = t_0 + frac12tau_1varepsilon^2 \[4pt]
          &+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
          +frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
          endalign$$



          Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
          $$beginalign
          &v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
          = pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
          & pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
          - frac r10080varepsilon^7
          pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
          &+ frac r362880varepsilon^9+dots
          endalign$$



          Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.



          Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ready. Waiting for comments
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 20:50










          • $begingroup$
            Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 22:15










          • $begingroup$
            @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 22:45










          • $begingroup$
            It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 23:05










          • $begingroup$
            @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 23:40















          2












          $begingroup$

          $textbfFull Edition.$



          $colorbrowntextbfExact expression of the imaginary part.$



          Denote
          $$z_1 = y = u+iv,$$
          then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
          $$y^2-zy+1=0tag1,$$
          $$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
          begincases
          u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
          2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
          endcases

          begincases
          u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
          left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
          - left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
          endcases

          $$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
          or
          $$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
          where
          $$t=2v-rsinvarepsilon.tag2.2$$



          Discriminant of the biquadratic equation $(2.1)$ is
          $$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
          and the explicit expression for $v(varepsilon)$ is
          $$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$



          From $(2.1)$ follows that
          $$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
          I.e. real Taylor series for the other solutions cannot be built.



          $colorbrowntextbfData transformations.$



          Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.



          At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.



          Firstly, let us present $(2)$ via superposition in the form of
          $$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
          where
          $$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
          beginalign
          &b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
          ,\[4pt]
          &c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
          & = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endalign

          $$begincases
          b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
          c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endcasestag5.2$$



          Will be built Maclaurin series $t(p)$ with
          $$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$



          Required derivatives will be obtained through differentiation of $g(t,p),$
          i.e. the expression $(5).$



          $colorbrowntextbfImplicit differentiation.$



          Denote
          $$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$



          Taking in account that




          $$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
          &dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
          = varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$




          repeated re-differentiation of $(5.1)$ becames simple:
          $$beginaligned
          &dfrac dgdp = g_10t'+g_01,\[4pt]
          &dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
          = Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
          &= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
          &dfrac d^3gdp^3
          = dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
          &= (g_10t'''+g_20t't''+g_11t'')
          +(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
          &+2(g_11t''+g_21t'^,2+g_12t')
          +(g_12t'+g_03)\[4pt]
          &= g_10t''' +3g_20t't'' +3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
          &dfrac d^4gdp^4
          = dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
          &= (g_10t^IV+g_20t't'''+g_11t''')
          +3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
          &+3(g_11t'''+g_21t't''+g_12t'')
          +(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
          &+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
          +3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
          &= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
          +6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3
          +6g_22t'^,2+4g_13t'+g_04dots
          endalignedtag7.2$$



          Partial derivatives in the point $(t_0,0)$ can be calculated by formula
          $$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
          where $delta_ij$ is Kronecker symbol,
          $$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
          =beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
          beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
          =beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$



          $$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
          =beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
          beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
          =beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$



          The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
          $$left[beginmatrix
          g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
          i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
          i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
          i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
          i=3 & 24t_0 & 0 &&&& \
          i=4 & 24 & &&&& \
          endmatrixright]tag9$$

          All the other derivatives' values $g_ij(t_0,0)$ equal to zero.



          $colorbrowntextbfDerivatives for the series.$



          Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of



          $$beginaligned
          &dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
          &dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
          endalignedtag10$$



          The system $(10)$ allows to get the explicit expressions for the required derivatives
          $$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$



          There are
          $$beginaligned
          &tau_1 = - dfracg_01g_10,\[4pt]
          &tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
          &tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
          +g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
          &tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
          +g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
          &dots,
          endalignedtag12$$

          wherein all unzero values $g_ij$ are defined in the table $(9).$



          Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.



          $colorbrowntextbfMaclaurin series of 9th order.$



          Obtained series has the form of
          $$beginalign
          &t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
          &= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
          +frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
          &+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
          = t_0 + frac12tau_1varepsilon^2 \[4pt]
          &+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
          +frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
          endalign$$



          Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
          $$beginalign
          &v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
          = pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
          & pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
          - frac r10080varepsilon^7
          pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
          &+ frac r362880varepsilon^9+dots
          endalign$$



          Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.



          Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ready. Waiting for comments
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 20:50










          • $begingroup$
            Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 22:15










          • $begingroup$
            @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 22:45










          • $begingroup$
            It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 23:05










          • $begingroup$
            @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 23:40













          2












          2








          2





          $begingroup$

          $textbfFull Edition.$



          $colorbrowntextbfExact expression of the imaginary part.$



          Denote
          $$z_1 = y = u+iv,$$
          then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
          $$y^2-zy+1=0tag1,$$
          $$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
          begincases
          u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
          2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
          endcases

          begincases
          u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
          left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
          - left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
          endcases

          $$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
          or
          $$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
          where
          $$t=2v-rsinvarepsilon.tag2.2$$



          Discriminant of the biquadratic equation $(2.1)$ is
          $$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
          and the explicit expression for $v(varepsilon)$ is
          $$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$



          From $(2.1)$ follows that
          $$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
          I.e. real Taylor series for the other solutions cannot be built.



          $colorbrowntextbfData transformations.$



          Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.



          At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.



          Firstly, let us present $(2)$ via superposition in the form of
          $$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
          where
          $$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
          beginalign
          &b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
          ,\[4pt]
          &c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
          & = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endalign

          $$begincases
          b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
          c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endcasestag5.2$$



          Will be built Maclaurin series $t(p)$ with
          $$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$



          Required derivatives will be obtained through differentiation of $g(t,p),$
          i.e. the expression $(5).$



          $colorbrowntextbfImplicit differentiation.$



          Denote
          $$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$



          Taking in account that




          $$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
          &dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
          = varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$




          repeated re-differentiation of $(5.1)$ becames simple:
          $$beginaligned
          &dfrac dgdp = g_10t'+g_01,\[4pt]
          &dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
          = Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
          &= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
          &dfrac d^3gdp^3
          = dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
          &= (g_10t'''+g_20t't''+g_11t'')
          +(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
          &+2(g_11t''+g_21t'^,2+g_12t')
          +(g_12t'+g_03)\[4pt]
          &= g_10t''' +3g_20t't'' +3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
          &dfrac d^4gdp^4
          = dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
          &= (g_10t^IV+g_20t't'''+g_11t''')
          +3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
          &+3(g_11t'''+g_21t't''+g_12t'')
          +(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
          &+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
          +3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
          &= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
          +6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3
          +6g_22t'^,2+4g_13t'+g_04dots
          endalignedtag7.2$$



          Partial derivatives in the point $(t_0,0)$ can be calculated by formula
          $$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
          where $delta_ij$ is Kronecker symbol,
          $$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
          =beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
          beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
          =beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$



          $$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
          =beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
          beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
          =beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$



          The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
          $$left[beginmatrix
          g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
          i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
          i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
          i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
          i=3 & 24t_0 & 0 &&&& \
          i=4 & 24 & &&&& \
          endmatrixright]tag9$$

          All the other derivatives' values $g_ij(t_0,0)$ equal to zero.



          $colorbrowntextbfDerivatives for the series.$



          Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of



          $$beginaligned
          &dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
          &dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
          endalignedtag10$$



          The system $(10)$ allows to get the explicit expressions for the required derivatives
          $$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$



          There are
          $$beginaligned
          &tau_1 = - dfracg_01g_10,\[4pt]
          &tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
          &tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
          +g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
          &tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
          +g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
          &dots,
          endalignedtag12$$

          wherein all unzero values $g_ij$ are defined in the table $(9).$



          Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.



          $colorbrowntextbfMaclaurin series of 9th order.$



          Obtained series has the form of
          $$beginalign
          &t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
          &= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
          +frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
          &+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
          = t_0 + frac12tau_1varepsilon^2 \[4pt]
          &+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
          +frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
          endalign$$



          Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
          $$beginalign
          &v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
          = pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
          & pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
          - frac r10080varepsilon^7
          pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
          &+ frac r362880varepsilon^9+dots
          endalign$$



          Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.



          Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.






          share|cite|improve this answer











          $endgroup$



          $textbfFull Edition.$



          $colorbrowntextbfExact expression of the imaginary part.$



          Denote
          $$z_1 = y = u+iv,$$
          then $y_1+y_2 = z = a-re^-ivarepsilon,quad y_1y_2=1,quad$ so
          $$y^2-zy+1=0tag1,$$
          $$(u+iv)^2-(a-rcosvarepsilon+irsinvarepsilon)(u+iv)+1=0,$$
          begincases
          u^2-v^2 - u(a-rcosvarepsilon) + vrsinvarepsilon +1 = 0\
          2uv - ursinvarepsilon - v(a-rcosvarepsilon) =0,
          endcases

          begincases
          u=dfrac v(a-rcosvarepsilon)2v-rsinvarepsilon\[4pt]
          left(dfrac (a-rcosvarepsilon)^2(2v-rsinvarepsilon)^2-1right)v^2
          - left(dfrac (a-rcosvarepsilon)^22v-rsinvarepsilon - rsinvarepsilonright)v +1 = 0,\
          endcases

          $$(a- rcosvarepsilon)^2(v^2-v(2v-rsinvarepsilon)) - (v^2-vrsinvarepsilon-1)(2v-rsinvarepsilon)^2 = 0,$$
          or
          $$f(t,varepsilon) = t^4+((a-rcosvarepsilon)^2-r^2sin^2varepsilon-4)t^2-(a-rcosvarepsilon)^2r^2sin^2varepsilon=0,tag2.1$$
          where
          $$t=2v-rsinvarepsilon.tag2.2$$



          Discriminant of the biquadratic equation $(2.1)$ is
          $$D=((a-rcosvarepsilon-2)^2+r^2sin^2varepsilon)((a-rcosvarepsilon+2)^2+r^2sin^2varepsilon) > 0,tag3.1$$
          and the explicit expression for $v(varepsilon)$ is
          $$v(varepsilon)=dfracrsinvarepsilonpm t(varepsilon)2,quadtextwherequad t(varepsilon) = sqrtdfracr^2sin^2varepsilon+4-(a-rcosvarepsilon)^2 +sqrt D2.tag3.2$$



          From $(2.1)$ follows that
          $$(t^2)_1(t^2)_2 = -(a-rcosvarepsilon)^2r^2sin^2varepsilon.$$
          I.e. real Taylor series for the other solutions cannot be built.



          $colorbrowntextbfData transformations.$



          Explicit expression $(3)$ of the imaginary part looks too hard for repeated re-differentiation.



          At the same time, the equation $(2)$ has linear structure and allows suitable repeated re-differentiation. This way required some additional operations.



          Firstly, let us present $(2)$ via superposition in the form of
          $$f(t,varepsilon) = g(t, 1-cosvarepsilon)),tag4$$
          where
          $$g(t,p)=t^4+b(p)t^2+c(p),tag5.1$$
          beginalign
          &b(p)=(a-r(1-p))^2-r^2(1-(1-p)^2)-4 = 2r^2p^2+2r(a-2r)p+((a-r)^2-4)
          ,\[4pt]
          &c(p)= -r^2(a-r(1-p))^2(1-(1-p)^2)\[4pt]
          & = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endalign

          $$begincases
          b(p)=2r^2p^2+2r(a-2r)p+(a-r)^2-4\
          c(p) = r^4p^4+2r^3(a-2r)p^3+r^2(a^2-6ar+5r^2)p^2-2r^2(a-r)^2p
          endcasestag5.2$$



          Will be built Maclaurin series $t(p)$ with
          $$t(0)= t_0 = sqrt4-(a-r)^2phantombig.tag6$$



          Required derivatives will be obtained through differentiation of $g(t,p),$
          i.e. the expression $(5).$



          $colorbrowntextbfImplicit differentiation.$



          Denote
          $$g_ij(t,p)=dfracpartial^(i+j)gpartial t^i partial p^j,tag7.1$$



          Taking in account that




          $$beginalign &dfrac ddpvarphi(t,p) = varphi,'_t,t'+varphi'_p,\[4pt]
          &dfrac ddpvarphi(t,p)psi(t^(n),dots,t'',t')
          = varphipsi,'_t^(n),t^(n+1) +dots+varphipsi,'_t'',t''' +varphipsi,'_t',t''+varphi'_tpsi,t'+varphi'_ppsi,endalign$$




          repeated re-differentiation of $(5.1)$ becames simple:
          $$beginaligned
          &dfrac dgdp = g_10t'+g_01,\[4pt]
          &dfrac d^2gdp^2 = dfrac ddp(g_10t'+g_01)
          = Bigl(g_10t''+g_20t'^,2,+g_11t'Bigr)+g_11t'+ g_02\[4pt]
          &= g_10t''+g_20t'^,2+2g_11t'+ g_02,\[4pt]
          &dfrac d^3gdp^3
          = dfrac ddpBigl(g_10t''+g_20t'^,2+2g_11t'+g_02Bigr)\[4pt]
          &= (g_10t'''+g_20t't''+g_11t'')
          +(2g_20t't''+g_30t'^,3+g_21t'^,2)\[4pt]
          &+2(g_11t''+g_21t'^,2+g_12t')
          +(g_12t'+g_03)\[4pt]
          &= g_10t''' +3g_20t't'' +3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03,\[4pt]
          &dfrac d^4gdp^4
          = dfrac ddpBigl(g_10t''' +3g_20t't'' + 3g_11t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03Bigr)\[4pt]
          &= (g_10t^IV+g_20t't'''+g_11t''')
          +3(g_20(t't'''+t''^,2)+g_30t'^,2t''+g_21t't'')\[4pt]
          &+3(g_11t'''+g_21t't''+g_12t'')
          +(3g_30t'^,2t''+g_40t'^,4+g_31t'^,3)\[4pt]
          &+3(2g_21t't'' +g_31t'^,3+g_22t'^,2)
          +3(g_12t''+g_22t'^,2+g_13t')+(g_13t'+g_04)\[4pt]
          &= g_10t^IV+g_20(4t't'''+3t''^,2)+4g_11t'''
          +6g_30t'^,2t''+12g_21t't''+6g_12t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3
          +6g_22t'^,2+4g_13t'+g_04dots
          endalignedtag7.2$$



          Partial derivatives in the point $(t_0,0)$ can be calculated by formula
          $$g_ij= delta_j0T_4i+B_jT_2i+delta_i0C_j,tag8.1$$
          where $delta_ij$ is Kronecker symbol,
          $$beginpmatrixT_40 \ T_41 \ T_42 \ T_43 \ T_44endpmatrix
          =beginpmatrixt_0^4 \4t_0^3 \12t_0^2 \24t_0 \24 endpmatrix,quad
          beginpmatrixT_20 \ T_21 \ T_22 \ T_23 \ T_24endpmatrix
          =beginpmatrixt_0^2 \2t_0 \2 \0 \0 endpmatrix,tag8.2$$



          $$beginpmatrixB_0 \ B_1 \ B_2 \ B_3 \ B_4endpmatrix
          =beginpmatrix-t_0^2 \2ar-4r^2 \4r^2 \0 \0 endpmatrix,quad
          beginpmatrixC_0 \ C_1 \ C_2 \ C_3 \ C_4endpmatrix
          =beginpmatrix0 \-2r^2(a-r)^2 \ 2r^2(a-r)(a-5r) \12r^3(a-2r) \24r^4 endpmatrix.tag8.3$$



          The derivatives' values $g_ij(t_0,0)$ can be presented in the table form of
          $$left[beginmatrix
          g_ij(t_0,0) & j=0 & j=1 & j=2 & j=3 & j=4 \
          i=0 & 0 & 2r(a-2r)t_0^2-2r^2(a-r)^2 & 4r^2t_0^2 +2r^2(a-r)(a-5r)& 12r^3(a-2r) & 24r^4 \
          i=1 & 2t_0^3 & 4r(a-2r)t_0 & 8r^2t_0 & 0 && \
          i=2 & 10t_0^2 & 4r(a-2r) & 8r^2 &&& \
          i=3 & 24t_0 & 0 &&&& \
          i=4 & 24 & &&&& \
          endmatrixright]tag9$$

          All the other derivatives' values $g_ij(t_0,0)$ equal to zero.



          $colorbrowntextbfDerivatives for the series.$



          Obtained results $(7),(9)$ allow to write the simple system for $t'(0),t''(0),t'''(0),t^IV(0)$ in the form of



          $$beginaligned
          &dfrac dgdp(t_0,0) = bigg(g_10t'+g_01bigg)bigg|_(t_0,0) = 0,\[4pt]
          &dfrac d^2gdp^2(t_0,0)= bigg(g_10t''+g_20t'^,2,+2g_11t'+g_02bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^3gdp^3(t_0,0) = bigg(g_10t''' +3(g_20t'+g_11)t''
          +g_30t'^,3+3g_21t'^,2+3g_12t'+g_03bigg)bigg|_(t_0,0)=0,\[4pt]
          &dfrac d^4gdp^4(t_0,0) = bigg(g_10t^IV+4(g_20t'+g_11)t''' +3g_20t''^,2+6(g_30t'^,2+2g_21t'+g_12)t''\[4pt]
          &+g_40t'^,4+4g_31t'^,3+6g_22t'^,2+4g_13t'+g_04bigg)bigg|_(t_0,0)=0dots.
          endalignedtag10$$



          The system $(10)$ allows to get the explicit expressions for the required derivatives
          $$tau_1=t'(0), tau_2=t''(0), tau_3=t'''(0), tau_4=t^IV(0). tag11$$



          There are
          $$beginaligned
          &tau_1 = - dfracg_01g_10,\[4pt]
          &tau_2 = - dfrac1g_10 bigg(g_20tau_1^2+2g_11tau_1+g_02bigg),\[4pt]
          &tau_3 = - dfrac1g_10 bigg(3(g_20tau_1+g_11)tau_2
          +g_30tau_1^3+3g_21tau_1^2+3g_12tau_1+g_03bigg),\[4pt]
          &tau_4 = - dfrac1g_10 bigg(4(g_20tau_1+g_11)tau_3 +3g_20tau_2^2+6(g_30tau_1^2+2g_21tau_1+g_12)tau_2
          +g_40tau_1^4+6g_22tau_1^2+g_04bigg),\[4pt]
          &dots,
          endalignedtag12$$

          wherein all unzero values $g_ij$ are defined in the table $(9).$



          Expressions for the next $tau_k$ can not contain essentially greater quantity of terms, because all the next partial derivatives are zeros.



          $colorbrowntextbfMaclaurin series of 9th order.$



          Obtained series has the form of
          $$beginalign
          &t(varepsilon) = t_0 + tau_1(1-cosvarepsilon)+frac12tau_2(1-cosvarepsilon)^2+frac16tau_3(1-cosvarepsilon)^3+frac124tau_4(1-cosvarepsilon)^4+dots\[4pt]
          &= t_0 + tau_1left(frac12!varepsilon^2 -frac14!varepsilon^4 +frac16!varepsilon^6-frac18!varepsilon^8right)
          +frac12tau_2left(frac12!varepsilon^2-frac14!varepsilon^4 +frac16!varepsilon^6right)^2\[4pt]
          &+frac16tau_3left(frac12!varepsilon^2-frac14!varepsilon^4right)^3 +frac124tau_4left(frac12!varepsilon^2right)^4+dots
          = t_0 + frac12tau_1varepsilon^2 \[4pt]
          &+frac124(-tau_1+6tau_2)varepsilon^4+frac1720(tau_1-15tau_2+15tau_3)varepsilon^6
          +frac140320(-tau_1+63tau_2-210tau_3+105tau_4+dots
          endalign$$



          Then, in accordance with $(3)-(4),$ can be obtained Maclaurin series for the both branches in the form of
          $$beginalign
          &v(varepsilon)=frac 12(rsinvarepsilon pm t(varepsilon))
          = pmfrac12 t_0 + frac r2 varepsilon pm frac14 tau_1varepsilon^2 -frac r12 varepsilon^3 pm frac148(-tau_1+6tau_1)varepsilon^4 +frac r240varepsilon^5\[4pt]
          & pm frac11440(tau_1-15tau_2+15tau_3)varepsilon^6
          - frac r10080varepsilon^7
          pm frac180640(-tau_1+63tau_2-210tau_3+105tau_4)varepsilon^8\[4pt]
          &+ frac r362880varepsilon^9+dots
          endalign$$



          Therefore, Maclaurin series of nineth order $colorgreentextrmcan be built$.



          Easy to see that used approach allows to calculate the arbitrary quantity of the series terms.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 13 at 9:53

























          answered Mar 11 at 17:06









          Yuri NegometyanovYuri Negometyanov

          12k1729




          12k1729











          • $begingroup$
            Ready. Waiting for comments
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 20:50










          • $begingroup$
            Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 22:15










          • $begingroup$
            @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 22:45










          • $begingroup$
            It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 23:05










          • $begingroup$
            @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 23:40
















          • $begingroup$
            Ready. Waiting for comments
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 20:50










          • $begingroup$
            Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 22:15










          • $begingroup$
            @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 22:45










          • $begingroup$
            It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
            $endgroup$
            – Piotr Benedysiuk
            Mar 12 at 23:05










          • $begingroup$
            @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
            $endgroup$
            – Yuri Negometyanov
            Mar 12 at 23:40















          $begingroup$
          Ready. Waiting for comments
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 20:50




          $begingroup$
          Ready. Waiting for comments
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 20:50












          $begingroup$
          Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
          $endgroup$
          – Piotr Benedysiuk
          Mar 12 at 22:15




          $begingroup$
          Take $r = 0$ and $a = 5$. Then equation 6, describing $t_0$ will give an imaginary result. Therefore the expression for $v(epsilon)$ will give imaginary terms - this should not be the case. I am sorry but I am unable to (quickly) see where the error is - your method (and the notation) is impressive but hard to follow for me.
          $endgroup$
          – Piotr Benedysiuk
          Mar 12 at 22:15












          $begingroup$
          @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 22:45




          $begingroup$
          @PiotrBenedysiuk $r=0$ eliminates $varepsilon$ at all.
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 22:45












          $begingroup$
          It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
          $endgroup$
          – Piotr Benedysiuk
          Mar 12 at 23:05




          $begingroup$
          It doesn't in the expression for your $v$. But the argument holds to if $r=1$ and $a=5$.
          $endgroup$
          – Piotr Benedysiuk
          Mar 12 at 23:05












          $begingroup$
          @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 23:40




          $begingroup$
          @PiotrBenedysiuk Then should $6ge|z|ge4,,$ and I cannot find solution of $(1)$
          $endgroup$
          – Yuri Negometyanov
          Mar 12 at 23:40

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066407%2ftaylor-expansion-of-imaginary-part-doable-or-not%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

          random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

          Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye