Do Vitali sets really explain measure-theoretic probability?What's the intuition behind and some illustrative applications of probability kernels?Do two probability kernels induce the same distributions if they induce the same distributions on rays?Samples from the Dirichlet measureBetween bayesian and measure theoretic approachesProbabilistic implications of the existence of non-measurable setsShow that there's a $A_n downarrow emptyset$ with $lim_n to infty mu(A_n) neq 0$Measure theory and Probability Theory on generalizations of topological spacesWhy keeping a disctinction between almost surely equal elements in probability theory?Proof of a change-of-measure formulaWhy is the sample space called a 'space'?

Multi tool use
Multi tool use

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

Worshiping one God at a time?

When did antialiasing start being available?

Can a wizard cast a spell during their first turn of combat if they initiated combat by releasing a readied spell?

Am I eligible for the Eurail Youth pass? I am 27.5 years old

Can you move over difficult terrain with only 5 feet of movement?

What favor did Moody owe Dumbledore?

Comment Box for Substitution Method of Integrals

How to generate binary array whose elements with values 1 are randomly drawn

Is honey really a supersaturated solution? Does heating to un-crystalize redissolve it or melt it?

Practical application of matrices and determinants

I got the following comment from a reputed math journal. What does it mean?

Is there a term for accumulated dirt on the outside of your hands and feet?

Fewest number of steps to reach 200 using special calculator

Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?

Synchronized implementation of a bank account in Java

Word for flower that blooms and wilts in one day

PTIJ What is the inyan of the Konami code in Uncle Moishy's song?

Can a medieval gyroplane be built?

What is the significance behind "40 days" that often appears in the Bible?

How do hiring committees for research positions view getting "scooped"?

What does "Four-F." mean?

Can other pieces capture a threatening piece and prevent a checkmate?

두음법칙 - When did North and South diverge in pronunciation of initial ㄹ?



Do Vitali sets really explain measure-theoretic probability?


What's the intuition behind and some illustrative applications of probability kernels?Do two probability kernels induce the same distributions if they induce the same distributions on rays?Samples from the Dirichlet measureBetween bayesian and measure theoretic approachesProbabilistic implications of the existence of non-measurable setsShow that there's a $A_n downarrow emptyset$ with $lim_n to infty mu(A_n) neq 0$Measure theory and Probability Theory on generalizations of topological spacesWhy keeping a disctinction between almost surely equal elements in probability theory?Proof of a change-of-measure formulaWhy is the sample space called a 'space'?













3












$begingroup$


I’ve read several answers about how how crazy sets like Vitali’s set are (one of the reasons) why we need $sigma$-algebra and measure theory for probability spaces. However, Vitali’s set is only eliminated by requiring non-trivial translation-invariant measures. So either (a) Vitali’s set wasn’t a problem in the first place or (b) probability spaces need translation-invariance.



No definition of probability spaces I’ve seen mentions translation invariance, leaving us with (a): Vitali’s set is not a problem for probabilists. Then:



  1. Why do people mention Vitali's set while explaining the measure-theoretic formulation of probability?

  2. Why do, in fact, we need measure theory for probability?

  3. Are there any other paradoxes arising from uncountable sets to worry about that do apply to regular measures and probability?









share|cite|improve this question











$endgroup$











  • $begingroup$
    Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
    $endgroup$
    – BigbearZzz
    Mar 12 at 21:48










  • $begingroup$
    @BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 21:56






  • 1




    $begingroup$
    Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:01






  • 1




    $begingroup$
    You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:05











  • $begingroup$
    @BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 22:16















3












$begingroup$


I’ve read several answers about how how crazy sets like Vitali’s set are (one of the reasons) why we need $sigma$-algebra and measure theory for probability spaces. However, Vitali’s set is only eliminated by requiring non-trivial translation-invariant measures. So either (a) Vitali’s set wasn’t a problem in the first place or (b) probability spaces need translation-invariance.



No definition of probability spaces I’ve seen mentions translation invariance, leaving us with (a): Vitali’s set is not a problem for probabilists. Then:



  1. Why do people mention Vitali's set while explaining the measure-theoretic formulation of probability?

  2. Why do, in fact, we need measure theory for probability?

  3. Are there any other paradoxes arising from uncountable sets to worry about that do apply to regular measures and probability?









share|cite|improve this question











$endgroup$











  • $begingroup$
    Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
    $endgroup$
    – BigbearZzz
    Mar 12 at 21:48










  • $begingroup$
    @BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 21:56






  • 1




    $begingroup$
    Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:01






  • 1




    $begingroup$
    You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:05











  • $begingroup$
    @BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 22:16













3












3








3





$begingroup$


I’ve read several answers about how how crazy sets like Vitali’s set are (one of the reasons) why we need $sigma$-algebra and measure theory for probability spaces. However, Vitali’s set is only eliminated by requiring non-trivial translation-invariant measures. So either (a) Vitali’s set wasn’t a problem in the first place or (b) probability spaces need translation-invariance.



No definition of probability spaces I’ve seen mentions translation invariance, leaving us with (a): Vitali’s set is not a problem for probabilists. Then:



  1. Why do people mention Vitali's set while explaining the measure-theoretic formulation of probability?

  2. Why do, in fact, we need measure theory for probability?

  3. Are there any other paradoxes arising from uncountable sets to worry about that do apply to regular measures and probability?









share|cite|improve this question











$endgroup$




I’ve read several answers about how how crazy sets like Vitali’s set are (one of the reasons) why we need $sigma$-algebra and measure theory for probability spaces. However, Vitali’s set is only eliminated by requiring non-trivial translation-invariant measures. So either (a) Vitali’s set wasn’t a problem in the first place or (b) probability spaces need translation-invariance.



No definition of probability spaces I’ve seen mentions translation invariance, leaving us with (a): Vitali’s set is not a problem for probabilists. Then:



  1. Why do people mention Vitali's set while explaining the measure-theoretic formulation of probability?

  2. Why do, in fact, we need measure theory for probability?

  3. Are there any other paradoxes arising from uncountable sets to worry about that do apply to regular measures and probability?






probability-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 12 at 23:12







Yatharth Agarwal

















asked Mar 12 at 21:40









Yatharth AgarwalYatharth Agarwal

542418




542418











  • $begingroup$
    Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
    $endgroup$
    – BigbearZzz
    Mar 12 at 21:48










  • $begingroup$
    @BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 21:56






  • 1




    $begingroup$
    Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:01






  • 1




    $begingroup$
    You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:05











  • $begingroup$
    @BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 22:16
















  • $begingroup$
    Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
    $endgroup$
    – BigbearZzz
    Mar 12 at 21:48










  • $begingroup$
    @BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 21:56






  • 1




    $begingroup$
    Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:01






  • 1




    $begingroup$
    You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
    $endgroup$
    – BigbearZzz
    Mar 12 at 22:05











  • $begingroup$
    @BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
    $endgroup$
    – Yatharth Agarwal
    Mar 12 at 22:16















$begingroup$
Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
$endgroup$
– BigbearZzz
Mar 12 at 21:48




$begingroup$
Non-measurable set is not the only reason that we define a measure on $sigma$-algebra instead of the whole power set.
$endgroup$
– BigbearZzz
Mar 12 at 21:48












$begingroup$
@BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
$endgroup$
– Yatharth Agarwal
Mar 12 at 21:56




$begingroup$
@BigbearZzz Some of the other reasons I’ve seen are $sigma$-algebra as “information” which is fine. But still, what’s even the relevance of people mentioning the Vitali set if can’t be solved for all probability spaces anyway?
$endgroup$
– Yatharth Agarwal
Mar 12 at 21:56




1




1




$begingroup$
Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
$endgroup$
– BigbearZzz
Mar 12 at 22:01




$begingroup$
Vitali set serves as an example of a Lebesgue non-measurable set, perhaps the first example of why the Lebesgue outer measure is not a measure on the power set of $Bbb R$. You can say that this has more to do with real analysis than probability theory.
$endgroup$
– BigbearZzz
Mar 12 at 22:01




1




1




$begingroup$
You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
$endgroup$
– BigbearZzz
Mar 12 at 22:05





$begingroup$
You should look into the construction of a probability measure via Caratheodory extension theorem. The presence/absence of Vitali set and translation invariant is not relevant at all, but still the theorem doesn't, in general, let you define a probability measure on the whole power set of your space anyway. This is another reason why $sigma$-algebra is preferred.
$endgroup$
– BigbearZzz
Mar 12 at 22:05













$begingroup$
@BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
$endgroup$
– Yatharth Agarwal
Mar 12 at 22:16




$begingroup$
@BigbearZzz That makes a ton of sense: These Vitali set examples are not actually relevant for probability theory; people just tend to mention them because they’re familiar with analysis, or they’re just trying to present an analogy of how things go wrong with uncountable sets! Does that sound fair?
$endgroup$
– Yatharth Agarwal
Mar 12 at 22:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145729%2fdo-vitali-sets-really-explain-measure-theoretic-probability%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145729%2fdo-vitali-sets-really-explain-measure-theoretic-probability%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







ldjlUY5FXEgine9,5R6V0xeo3e4D UJZWYTSWoBT7SZIeXoojVval0X0ClBUgdL,UOhXsbJCIxm1Cv1BC3nDr,F3Sr2s,Uq,8OTeuP,7
m0MY0NKmIPRrlZE7Bb,XR SokeqhL,VRZmFa8rO,apw8QVX,MK,1e b M,FAAy,h7JtE

Popular posts from this blog

Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee