Using the product of the roots of $(z+1)^n=1$ to prove that $prod_k=1^n-1 sinfrackpin=fracn2^n-1$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$How to prove those “curious identities”?More Questions from Mathematical Analysis by ApostolShowing that $|f(z)| leq prod limits_k=1^n left|fracz-z_k1-overlinez_kz right|$Prove $left|fracz_1z_2right|=frac$ for two complex numbersProve the inequalities $|z_1 +z_2| geq frac12(|z_1|+|z_2|)|frac z_1 +frac z_2 |$Prove that the complex expression is realExpressing $frac sin(5x)sin(x)$ in powers of $cos(x)$ using complex numbersProve: if $Z_1$ and $Z_2$ are complex, then $Z_1*Z_2=R_1R_2[cos(theta_1+theta_2)+isin(theta_1+theta_2)]$Complex number conjugateComplex numbers $z_1, z_2$ simultaneously satisfy the conditionsproving $z_1+z_2 / 1+z_1z_2$ is a real numberProve that $frac(z_1 + z_2)(z_2 + z_3)…(z_n-1 + z_n)(z_n + z_1)z_1 cdot z_2 cdot … cdot z_n$ is real

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?

Make it rain characters

How many people can fit inside Mordenkainen's Magnificent Mansion?

system() function string length limit

Python - Fishing Simulator

University's motivation for having tenure-track positions

He got a vote 80% that of Emmanuel Macron’s

Can undead you have reanimated wait inside a portable hole?

"... to apply for a visa" or "... and applied for a visa"?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

Is every episode of "Where are my Pants?" identical?

Why can't wing-mounted spoilers be used to steepen approaches?

Simulating Exploding Dice

How can I protect witches in combat who wear limited clothing?

Did the new image of black hole confirm the general theory of relativity?

Why can't devices on different VLANs, but on the same subnet, communicate?

Single author papers against my advisor's will?

What's the point in a preamp?

Semisimplicity of the category of coherent sheaves?

How to test the equality of two Pearson correlation coefficients computed from the same sample?

How is simplicity better than precision and clarity in prose?

Wolves and sheep

Difference between "generating set" and free product?



Using the product of the roots of $(z+1)^n=1$ to prove that $prod_k=1^n-1 sinfrackpin=fracn2^n-1$



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$How to prove those “curious identities”?More Questions from Mathematical Analysis by ApostolShowing that $|f(z)| leq prod limits_k=1^n left|fracz-z_k1-overlinez_kz right|$Prove $left|fracz_1z_2right|=fracz_1$ for two complex numbersProve the inequalities $|z_1 +z_2| geq frac12(|z_1|+|z_2|)|frac z_1 z_1 +frac z_2 |$Prove that the complex expression is realExpressing $frac sin(5x)sin(x)$ in powers of $cos(x)$ using complex numbersProve: if $Z_1$ and $Z_2$ are complex, then $Z_1*Z_2=R_1R_2[cos(theta_1+theta_2)+isin(theta_1+theta_2)]$Complex number conjugateComplex numbers $z_1, z_2$ simultaneously satisfy the conditionsproving $z_1+z_2 / 1+z_1z_2$ is a real numberProve that $frac(z_1 + z_2)(z_2 + z_3)…(z_n-1 + z_n)(z_n + z_1)z_1 cdot z_2 cdot … cdot z_n$ is real










0












$begingroup$



$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$




Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$



But if I do the multiplication ,the calculation result seems very ugly...










share|cite|improve this question











$endgroup$











  • $begingroup$
    Possible duplicate of How to prove those "curious identities"?
    $endgroup$
    – Martin R
    Mar 25 at 8:22










  • $begingroup$
    Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
    $endgroup$
    – Martin R
    Mar 25 at 8:23











  • $begingroup$
    Possible duplicate of More Questions from Mathematical Analysis by Apostol
    $endgroup$
    – rtybase
    Mar 25 at 10:02















0












$begingroup$



$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$




Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$



But if I do the multiplication ,the calculation result seems very ugly...










share|cite|improve this question











$endgroup$











  • $begingroup$
    Possible duplicate of How to prove those "curious identities"?
    $endgroup$
    – Martin R
    Mar 25 at 8:22










  • $begingroup$
    Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
    $endgroup$
    – Martin R
    Mar 25 at 8:23











  • $begingroup$
    Possible duplicate of More Questions from Mathematical Analysis by Apostol
    $endgroup$
    – rtybase
    Mar 25 at 10:02













0












0








0





$begingroup$



$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$




Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$



But if I do the multiplication ,the calculation result seems very ugly...










share|cite|improve this question











$endgroup$





$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$




Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$



But if I do the multiplication ,the calculation result seems very ugly...







linear-algebra complex-analysis complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 25 at 8:26









Blue

49.7k870158




49.7k870158










asked Mar 25 at 7:53









jacksonjackson

1499




1499











  • $begingroup$
    Possible duplicate of How to prove those "curious identities"?
    $endgroup$
    – Martin R
    Mar 25 at 8:22










  • $begingroup$
    Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
    $endgroup$
    – Martin R
    Mar 25 at 8:23











  • $begingroup$
    Possible duplicate of More Questions from Mathematical Analysis by Apostol
    $endgroup$
    – rtybase
    Mar 25 at 10:02
















  • $begingroup$
    Possible duplicate of How to prove those "curious identities"?
    $endgroup$
    – Martin R
    Mar 25 at 8:22










  • $begingroup$
    Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
    $endgroup$
    – Martin R
    Mar 25 at 8:23











  • $begingroup$
    Possible duplicate of More Questions from Mathematical Analysis by Apostol
    $endgroup$
    – rtybase
    Mar 25 at 10:02















$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22




$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22












$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23





$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23













$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02




$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02










4 Answers
4






active

oldest

votes


















5












$begingroup$

Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$

where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?






share|cite|improve this answer











$endgroup$












  • $begingroup$
    the penultimate equation seems wrong on the exp?
    $endgroup$
    – jackson
    Mar 25 at 9:03










  • $begingroup$
    @jackson Thanks for pointing out!
    $endgroup$
    – Robert Z
    Mar 25 at 9:12










  • $begingroup$
    I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
    $endgroup$
    – jackson
    Mar 25 at 9:26






  • 1




    $begingroup$
    @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
    $endgroup$
    – Robert Z
    Mar 25 at 9:30











  • $begingroup$
    thanks a lot ,i understand your answer now
    $endgroup$
    – jackson
    Mar 25 at 9:37


















0












$begingroup$

Consider using the Viete's theorem.



We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.



But I can't relate the product to the main problem yet...






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
    $endgroup$
    – Trebor
    Mar 25 at 8:16


















0












$begingroup$

A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.



$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$



Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$



$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$



Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$



Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.



$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$



Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Consider the expression $$(z+1) = Z $$
    Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
    Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
    $$beginalign*
    (z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
    endalign*$$



    $z=0$ is a root. So divide above equation by z and you will get:
    $$beginalign*
    z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
    endalign*$$

    The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
    $$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$



    Now using the hint by Robert Z:



    $$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
    frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$



    And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$



    Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$






    share|cite|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161493%2fusing-the-product-of-the-roots-of-z1n-1-to-prove-that-prod-k-1n-1%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Hint. Note that
      $$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
      frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
      =frac(-1)^n-1prod_k=2^nz_k2^n-1.$$

      where
      $$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
      Can you take it from here?






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        the penultimate equation seems wrong on the exp?
        $endgroup$
        – jackson
        Mar 25 at 9:03










      • $begingroup$
        @jackson Thanks for pointing out!
        $endgroup$
        – Robert Z
        Mar 25 at 9:12










      • $begingroup$
        I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
        $endgroup$
        – jackson
        Mar 25 at 9:26






      • 1




        $begingroup$
        @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
        $endgroup$
        – Robert Z
        Mar 25 at 9:30











      • $begingroup$
        thanks a lot ,i understand your answer now
        $endgroup$
        – jackson
        Mar 25 at 9:37















      5












      $begingroup$

      Hint. Note that
      $$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
      frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
      =frac(-1)^n-1prod_k=2^nz_k2^n-1.$$

      where
      $$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
      Can you take it from here?






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        the penultimate equation seems wrong on the exp?
        $endgroup$
        – jackson
        Mar 25 at 9:03










      • $begingroup$
        @jackson Thanks for pointing out!
        $endgroup$
        – Robert Z
        Mar 25 at 9:12










      • $begingroup$
        I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
        $endgroup$
        – jackson
        Mar 25 at 9:26






      • 1




        $begingroup$
        @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
        $endgroup$
        – Robert Z
        Mar 25 at 9:30











      • $begingroup$
        thanks a lot ,i understand your answer now
        $endgroup$
        – jackson
        Mar 25 at 9:37













      5












      5








      5





      $begingroup$

      Hint. Note that
      $$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
      frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
      =frac(-1)^n-1prod_k=2^nz_k2^n-1.$$

      where
      $$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
      Can you take it from here?






      share|cite|improve this answer











      $endgroup$



      Hint. Note that
      $$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
      frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
      =frac(-1)^n-1prod_k=2^nz_k2^n-1.$$

      where
      $$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
      Can you take it from here?







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 25 at 9:32

























      answered Mar 25 at 8:13









      Robert ZRobert Z

      102k1072145




      102k1072145











      • $begingroup$
        the penultimate equation seems wrong on the exp?
        $endgroup$
        – jackson
        Mar 25 at 9:03










      • $begingroup$
        @jackson Thanks for pointing out!
        $endgroup$
        – Robert Z
        Mar 25 at 9:12










      • $begingroup$
        I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
        $endgroup$
        – jackson
        Mar 25 at 9:26






      • 1




        $begingroup$
        @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
        $endgroup$
        – Robert Z
        Mar 25 at 9:30











      • $begingroup$
        thanks a lot ,i understand your answer now
        $endgroup$
        – jackson
        Mar 25 at 9:37
















      • $begingroup$
        the penultimate equation seems wrong on the exp?
        $endgroup$
        – jackson
        Mar 25 at 9:03










      • $begingroup$
        @jackson Thanks for pointing out!
        $endgroup$
        – Robert Z
        Mar 25 at 9:12










      • $begingroup$
        I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
        $endgroup$
        – jackson
        Mar 25 at 9:26






      • 1




        $begingroup$
        @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
        $endgroup$
        – Robert Z
        Mar 25 at 9:30











      • $begingroup$
        thanks a lot ,i understand your answer now
        $endgroup$
        – jackson
        Mar 25 at 9:37















      $begingroup$
      the penultimate equation seems wrong on the exp?
      $endgroup$
      – jackson
      Mar 25 at 9:03




      $begingroup$
      the penultimate equation seems wrong on the exp?
      $endgroup$
      – jackson
      Mar 25 at 9:03












      $begingroup$
      @jackson Thanks for pointing out!
      $endgroup$
      – Robert Z
      Mar 25 at 9:12




      $begingroup$
      @jackson Thanks for pointing out!
      $endgroup$
      – Robert Z
      Mar 25 at 9:12












      $begingroup$
      I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
      $endgroup$
      – jackson
      Mar 25 at 9:26




      $begingroup$
      I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
      $endgroup$
      – jackson
      Mar 25 at 9:26




      1




      1




      $begingroup$
      @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
      $endgroup$
      – Robert Z
      Mar 25 at 9:30





      $begingroup$
      @jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
      $endgroup$
      – Robert Z
      Mar 25 at 9:30













      $begingroup$
      thanks a lot ,i understand your answer now
      $endgroup$
      – jackson
      Mar 25 at 9:37




      $begingroup$
      thanks a lot ,i understand your answer now
      $endgroup$
      – jackson
      Mar 25 at 9:37











      0












      $begingroup$

      Consider using the Viete's theorem.



      We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.



      But I can't relate the product to the main problem yet...






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
        $endgroup$
        – Trebor
        Mar 25 at 8:16















      0












      $begingroup$

      Consider using the Viete's theorem.



      We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.



      But I can't relate the product to the main problem yet...






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
        $endgroup$
        – Trebor
        Mar 25 at 8:16













      0












      0








      0





      $begingroup$

      Consider using the Viete's theorem.



      We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.



      But I can't relate the product to the main problem yet...






      share|cite|improve this answer









      $endgroup$



      Consider using the Viete's theorem.



      We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.



      But I can't relate the product to the main problem yet...







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Mar 25 at 8:14









      TreborTrebor

      1,01315




      1,01315











      • $begingroup$
        Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
        $endgroup$
        – Trebor
        Mar 25 at 8:16
















      • $begingroup$
        Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
        $endgroup$
        – Trebor
        Mar 25 at 8:16















      $begingroup$
      Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
      $endgroup$
      – Trebor
      Mar 25 at 8:16




      $begingroup$
      Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
      $endgroup$
      – Trebor
      Mar 25 at 8:16











      0












      $begingroup$

      A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.



      $$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$



      Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$



      $$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$



      Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$



      Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.



      $$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$



      Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.



        $$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$



        Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$



        $$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$



        Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$



        Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.



        $$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$



        Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.



          $$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$



          Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$



          $$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$



          Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$



          Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.



          $$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$



          Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$






          share|cite|improve this answer









          $endgroup$



          A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.



          $$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$



          Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$



          $$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$



          Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$



          Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.



          $$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$



          Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 25 at 8:44









          Paras KhoslaParas Khosla

          3,278627




          3,278627





















              0












              $begingroup$

              Consider the expression $$(z+1) = Z $$
              Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
              Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
              $$beginalign*
              (z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
              endalign*$$



              $z=0$ is a root. So divide above equation by z and you will get:
              $$beginalign*
              z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
              endalign*$$

              The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
              $$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$



              Now using the hint by Robert Z:



              $$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
              frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$



              And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$



              Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$






              share|cite|improve this answer











              $endgroup$

















                0












                $begingroup$

                Consider the expression $$(z+1) = Z $$
                Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
                Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
                $$beginalign*
                (z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
                endalign*$$



                $z=0$ is a root. So divide above equation by z and you will get:
                $$beginalign*
                z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
                endalign*$$

                The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
                $$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$



                Now using the hint by Robert Z:



                $$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
                frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$



                And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$



                Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$






                share|cite|improve this answer











                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Consider the expression $$(z+1) = Z $$
                  Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
                  Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
                  $$beginalign*
                  (z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
                  endalign*$$



                  $z=0$ is a root. So divide above equation by z and you will get:
                  $$beginalign*
                  z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
                  endalign*$$

                  The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
                  $$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$



                  Now using the hint by Robert Z:



                  $$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
                  frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$



                  And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$



                  Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$






                  share|cite|improve this answer











                  $endgroup$



                  Consider the expression $$(z+1) = Z $$
                  Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
                  Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
                  $$beginalign*
                  (z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
                  endalign*$$



                  $z=0$ is a root. So divide above equation by z and you will get:
                  $$beginalign*
                  z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
                  endalign*$$

                  The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
                  $$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$



                  Now using the hint by Robert Z:



                  $$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
                  frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$



                  And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$



                  Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Mar 25 at 10:28

























                  answered Mar 25 at 9:31









                  NavinNavin

                  266




                  266



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161493%2fusing-the-product-of-the-roots-of-z1n-1-to-prove-that-prod-k-1n-1%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

                      Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

                      Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers