Using the product of the roots of $(z+1)^n=1$ to prove that $prod_k=1^n-1 sinfrackpin=fracn2^n-1$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$How to prove those “curious identities”?More Questions from Mathematical Analysis by ApostolShowing that $|f(z)| leq prod limits_k=1^n left|fracz-z_k1-overlinez_kz right|$Prove $left|fracz_1z_2right|=frac$ for two complex numbersProve the inequalities $|z_1 +z_2| geq frac12(|z_1|+|z_2|)|frac z_1 +frac z_2 |$Prove that the complex expression is realExpressing $frac sin(5x)sin(x)$ in powers of $cos(x)$ using complex numbersProve: if $Z_1$ and $Z_2$ are complex, then $Z_1*Z_2=R_1R_2[cos(theta_1+theta_2)+isin(theta_1+theta_2)]$Complex number conjugateComplex numbers $z_1, z_2$ simultaneously satisfy the conditionsproving $z_1+z_2 / 1+z_1z_2$ is a real numberProve that $frac(z_1 + z_2)(z_2 + z_3)…(z_n-1 + z_n)(z_n + z_1)z_1 cdot z_2 cdot … cdot z_n$ is real
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Make it rain characters
How many people can fit inside Mordenkainen's Magnificent Mansion?
system() function string length limit
Python - Fishing Simulator
University's motivation for having tenure-track positions
He got a vote 80% that of Emmanuel Macron’s
Can undead you have reanimated wait inside a portable hole?
"... to apply for a visa" or "... and applied for a visa"?
Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?
Is every episode of "Where are my Pants?" identical?
Why can't wing-mounted spoilers be used to steepen approaches?
Simulating Exploding Dice
How can I protect witches in combat who wear limited clothing?
Did the new image of black hole confirm the general theory of relativity?
Why can't devices on different VLANs, but on the same subnet, communicate?
Single author papers against my advisor's will?
What's the point in a preamp?
Semisimplicity of the category of coherent sheaves?
How to test the equality of two Pearson correlation coefficients computed from the same sample?
How is simplicity better than precision and clarity in prose?
Wolves and sheep
Difference between "generating set" and free product?
Using the product of the roots of $(z+1)^n=1$ to prove that $prod_k=1^n-1 sinfrackpin=fracn2^n-1$
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$How to prove those “curious identities”?More Questions from Mathematical Analysis by ApostolShowing that $|f(z)| leq prod limits_k=1^n left|fracz-z_k1-overlinez_kz right|$Prove $left|fracz_1z_2right|=fracz_1$ for two complex numbersProve the inequalities $|z_1 +z_2| geq frac12(|z_1|+|z_2|)|frac z_1 z_1 +frac z_2 |$Prove that the complex expression is realExpressing $frac sin(5x)sin(x)$ in powers of $cos(x)$ using complex numbersProve: if $Z_1$ and $Z_2$ are complex, then $Z_1*Z_2=R_1R_2[cos(theta_1+theta_2)+isin(theta_1+theta_2)]$Complex number conjugateComplex numbers $z_1, z_2$ simultaneously satisfy the conditionsproving $z_1+z_2 / 1+z_1z_2$ is a real numberProve that $frac(z_1 + z_2)(z_2 + z_3)…(z_n-1 + z_n)(z_n + z_1)z_1 cdot z_2 cdot … cdot z_n$ is real
$begingroup$
$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$
Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$
But if I do the multiplication ,the calculation result seems very ugly...
linear-algebra complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$
Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$
But if I do the multiplication ,the calculation result seems very ugly...
linear-algebra complex-analysis complex-numbers
$endgroup$
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02
add a comment |
$begingroup$
$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$
Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$
But if I do the multiplication ,the calculation result seems very ugly...
linear-algebra complex-analysis complex-numbers
$endgroup$
$z_1,z_2,…z_n$ satisfy the equation $(z+1)^n=1$. Use the product of $z_1,z_2,…z_n$ to prove that
$$sin frac pin sin frac 2pin…sin frac (n-1)pin=frac n2^n-1$$
Attempt I compute $z_1=1-1=0,…z_n=cos frac(n-1)2pi n+isin frac(2n-1)pi n-1$
But if I do the multiplication ,the calculation result seems very ugly...
linear-algebra complex-analysis complex-numbers
linear-algebra complex-analysis complex-numbers
edited Mar 25 at 8:26
Blue
49.7k870158
49.7k870158
asked Mar 25 at 7:53
jacksonjackson
1499
1499
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02
add a comment |
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$
where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?
$endgroup$
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
add a comment |
$begingroup$
Consider using the Viete's theorem.
We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.
But I can't relate the product to the main problem yet...
$endgroup$
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
add a comment |
$begingroup$
A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.
$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$
Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$
$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$
Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$
Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.
$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$
Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$
$endgroup$
add a comment |
$begingroup$
Consider the expression $$(z+1) = Z $$
Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
$$beginalign*
(z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
endalign*$$
$z=0$ is a root. So divide above equation by z and you will get:
$$beginalign*
z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
endalign*$$
The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
$$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$
Now using the hint by Robert Z:
$$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$
And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$
Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161493%2fusing-the-product-of-the-roots-of-z1n-1-to-prove-that-prod-k-1n-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$
where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?
$endgroup$
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
add a comment |
$begingroup$
Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$
where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?
$endgroup$
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
add a comment |
$begingroup$
Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$
where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?
$endgroup$
Hint. Note that
$$prod_k=1^n-1sinleft(frackpinright)=prod_k=1^n-1frace^ifrackpin-e^-ifrackpin2i=
frace^-ifracn(n-1)pi2n(2i)^n-1prod_k=1^n-1left(e^ifrac2kpin-1right)
=frac(-1)^n-1prod_k=2^nz_k2^n-1.$$
where
$$frac(z+1)^n-1z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n).$$
Can you take it from here?
edited Mar 25 at 9:32
answered Mar 25 at 8:13
Robert ZRobert Z
102k1072145
102k1072145
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
add a comment |
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
the penultimate equation seems wrong on the exp?
$endgroup$
– jackson
Mar 25 at 9:03
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
@jackson Thanks for pointing out!
$endgroup$
– Robert Z
Mar 25 at 9:12
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
$begingroup$
I can understand all the equation you write ,but maybe I forget some knowledge in algebra ,can you tell me why $z_2z_3..z_n=(-1)^n-1n$
$endgroup$
– jackson
Mar 25 at 9:26
1
1
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
@jackson Note that $((z+1)^n-1)/z=z^n-1+nz^n-2+dots +n=(z-z_2)dots(z-z_n)$. Now compare the constant terms on both sides.
$endgroup$
– Robert Z
Mar 25 at 9:30
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
$begingroup$
thanks a lot ,i understand your answer now
$endgroup$
– jackson
Mar 25 at 9:37
add a comment |
$begingroup$
Consider using the Viete's theorem.
We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.
But I can't relate the product to the main problem yet...
$endgroup$
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
add a comment |
$begingroup$
Consider using the Viete's theorem.
We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.
But I can't relate the product to the main problem yet...
$endgroup$
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
add a comment |
$begingroup$
Consider using the Viete's theorem.
We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.
But I can't relate the product to the main problem yet...
$endgroup$
Consider using the Viete's theorem.
We need to factor out your first root $z=0$. After that the constant term is $n$, and the highest term is $z^n-1$. So the product of the roots should be $(-1)^n-1n$.
But I can't relate the product to the main problem yet...
answered Mar 25 at 8:14
TreborTrebor
1,01315
1,01315
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
add a comment |
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
$begingroup$
Alright, @Song and I hinted at two parts of the solution, and bringing them together you have your solution...
$endgroup$
– Trebor
Mar 25 at 8:16
add a comment |
$begingroup$
A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.
$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$
Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$
$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$
Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$
Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.
$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$
Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$
$endgroup$
add a comment |
$begingroup$
A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.
$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$
Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$
$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$
Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$
Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.
$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$
Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$
$endgroup$
add a comment |
$begingroup$
A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.
$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$
Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$
$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$
Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$
Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.
$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$
Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$
$endgroup$
A different approach. Consider $x^2n-2x^ncos(na)+1=0 , ngt0 , , agt 0$. This gives you $x^n=exp pm i na$. or $x=exp pm ileft(a+frac2pi knright), k=0, 1, 2,ldots , n-1$.
$$beginalignedx^2n-2x^ncos(na)+1&=0\ prod_k=0^n-1left(x-exp ileft(dfraca+2pi knright)right)left(x-exp ileft(-dfraca+2pi knright)right)&=0\ prod_k=0^n-1left[ x^2-2xcosleft(a+dfrac2pi knright)+1right]&=0endaligned$$
Let $x=1$ and set $a=2b$. $$beginalignedprod_k=0^n-1left[1-2cosleft(2b+dfrac2pi knright)+1right]&=0\ prod_k=0^n-1left[2-2cos2left(b+dfracpi knright)right]&=0endaligned$$
$$beginalignedprod_k=0^n-1left[2-2cos2left(b+dfrackpinright)right]&=2-2cosleft(2nbright)equiv4sin^2left(nbright)endalignedtag1$$
Also $$beginaligned2-2cos2left(b+dfracpi knright)&=2-2left[cos^2left(b+dfracpi knright)-sin^2left(b+dfracpi knright)right]\&=4sin^2left(b+dfrackpi nright)endalignedtag2$$
Equate $(1)$ and $prod_k=0^n-1(2)$ and take square root of both sides to get the desired result.
$$beginalignedsqrt4sin^2left(nbright)&=sqrtprod_k=0^n-14sin^2left(b+dfrackpi nright)\2sin left(nbright)&=2^nprod_k=0^n-1sinleft(b+dfrackpi nright)\ dfracsinleft(nbright)sin b&=2^n-1dfracsinleft(bright)sin bsinleft(b+dfracpinright)cdotssinleft(b+dfrac(n-1)pinright)endaligned$$
Now take the limit as $bto 0^+$ which gives you: $$n=2^n-1underbracesinleft(dfracpinright)sinleft(dfrac2pinright)cdotssinleft(dfrac(n-1)pinright)_textLet it =varphiimplies boxedvarphi =dfracn2^n-1$$
answered Mar 25 at 8:44
Paras KhoslaParas Khosla
3,278627
3,278627
add a comment |
add a comment |
$begingroup$
Consider the expression $$(z+1) = Z $$
Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
$$beginalign*
(z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
endalign*$$
$z=0$ is a root. So divide above equation by z and you will get:
$$beginalign*
z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
endalign*$$
The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
$$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$
Now using the hint by Robert Z:
$$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$
And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$
Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$
$endgroup$
add a comment |
$begingroup$
Consider the expression $$(z+1) = Z $$
Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
$$beginalign*
(z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
endalign*$$
$z=0$ is a root. So divide above equation by z and you will get:
$$beginalign*
z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
endalign*$$
The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
$$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$
Now using the hint by Robert Z:
$$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$
And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$
Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$
$endgroup$
add a comment |
$begingroup$
Consider the expression $$(z+1) = Z $$
Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
$$beginalign*
(z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
endalign*$$
$z=0$ is a root. So divide above equation by z and you will get:
$$beginalign*
z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
endalign*$$
The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
$$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$
Now using the hint by Robert Z:
$$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$
And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$
Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$
$endgroup$
Consider the expression $$(z+1) = Z $$
Then, $$Z^n=1 $$ Also, $$1=(-1)^2=e^i2kpi $$ Therefore, $$Z=(1)^1/n=e^i2kpi/n $$ And then, $$ z=e^i2kpi/n-1$$
Now, this has got $n$ roots for $ k =0 space to space n-1$ and we designate these roots as $z_0,z_1,z_2...z_n-1$. Now, coming back to original expression and expanding it:
$$beginalign*
(z+1)^n&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz+1&=1\ z^n+nz^n-1+frac n2(n-1)z^n-2+..+nz&=0
endalign*$$
$z=0$ is a root. So divide above equation by z and you will get:
$$beginalign*
z^n-1+nz^n-2+frac n2(n-1)z^n-3+..+n&=0
endalign*$$
The above equation now has roots $z_1,z_2,...,z_n-1$ and the product of these roots will be $(-1)^n-1n$ (ratio of coefficients of lowest power term to highest power term, positive for even degree polynomial and negative for odd degree polynomial).
$$prod_k=1^n-1left(e^ifrac2kpin-1right)=(-1)^n-1n $$
Now using the hint by Robert Z:
$$prod_k=1^n-1sinleft(frackpinright)=frac1(2i)^n-1prod_k=1^n-1left(e^ifrackpin-e^-ifrackpinright)=
frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right).$$
And, $$frac1(2i)^n-1prod_k=1^n-1e^-ifrackpinleft(e^ifrac2kpin-1right) = frac(-1)^n-1n(2i)^n-1prod_k=1^n-1e^-ifrackpin = frac(-1)^n-1n(2i)^n-1e^-ifrac(n-1)pi2$$
Which on simplification, gives $$frac(-1)^n-1n(-2)^n-1 = fracn(2)^n-1$$
edited Mar 25 at 10:28
answered Mar 25 at 9:31
NavinNavin
266
266
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3161493%2fusing-the-product-of-the-roots-of-z1n-1-to-prove-that-prod-k-1n-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possible duplicate of How to prove those "curious identities"?
$endgroup$
– Martin R
Mar 25 at 8:22
$begingroup$
Or this one: Prove that $prod_k=1^n-1sinfrack pin = fracn2^n-1$.
$endgroup$
– Martin R
Mar 25 at 8:23
$begingroup$
Possible duplicate of More Questions from Mathematical Analysis by Apostol
$endgroup$
– rtybase
Mar 25 at 10:02