Evaluate $int frac12+sin x+cos xdx.$ [duplicate] The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluating $int P(sin x, cos x) textdx$What is the right first step to take when integrating $1/(2+ sin x + cos x)$?Evaluate $int frac1sin xcos x dx $Evaluate the integral $int^fracpi2_0 fracsin^3xsin^3x+cos^3x,mathrm dx$.Trig substitution fails for evaluating $ int fraccos x sin xsin^2x + sin x + 1 dx$?$int^infty_0 fraccos(x)sqrtx,dx$ Evaluate using Fresnel IntegralsEvaluate trig integrals $int sin^4 2x cos 2x, dx$.Evaluate $intfrac sin 4x sin x dx$Evaluation of $int fracsqrtsin ^4x+cos ^4xsin ^3x. cos x dx$Integral of $intfraccos^4x + sin^4xsqrt1 + cos 4xdx$Evaluate $int frac dxsin frac x2sqrt cos^3 frac x2$Evaluate $int _fracpi6 ^ fracpi3 fracsin t+cos t sqrtsin 2t dt$
Windows 10: How to Lock (not sleep) laptop on lid close?
What's the point in a preamp?
Can withdrawing asylum be illegal?
Is there a writing software that you can sort scenes like slides in PowerPoint?
Wall plug outlet change
Are my PIs rude or am I just being too sensitive?
Simulating Exploding Dice
What do you call a plan that's an alternative plan in case your initial plan fails?
How do you keep chess fun when your opponent constantly beats you?
How are presidential pardons supposed to be used?
Segmentation fault output is suppressed when piping stdin into a function. Why?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
How to split my screen on my Macbook Air?
Road tyres vs "Street" tyres for charity ride on MTB Tandem
How to pronounce 1ターン?
Change bounding box of math glyphs in LuaTeX
What aspect of planet Earth must be changed to prevent the industrial revolution?
Would an alien lifeform be able to achieve space travel if lacking in vision?
Why can't devices on different VLANs, but on the same subnet, communicate?
Python - Fishing Simulator
Do warforged have souls?
Can undead you have reanimated wait inside a portable hole?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
How do I add random spotting to the same face in cycles?
Evaluate $int frac12+sin x+cos xdx.$ [duplicate]
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Evaluating $int P(sin x, cos x) textdx$What is the right first step to take when integrating $1/(2+ sin x + cos x)$?Evaluate $int frac1sin xcos x dx $Evaluate the integral $int^fracpi2_0 fracsin^3xsin^3x+cos^3x,mathrm dx$.Trig substitution fails for evaluating $ int fraccos x sin xsin^2x + sin x + 1 dx$?$int^infty_0 fraccos(x)sqrtx,dx$ Evaluate using Fresnel IntegralsEvaluate trig integrals $int sin^4 2x cos 2x, dx$.Evaluate $intfrac sin 4x sin x dx$Evaluation of $int fracsqrtsin ^4x+cos ^4xsin ^3x. cos x dx$Integral of $intfraccos^4x + sin^4xsqrt1 + cos 4xdx$Evaluate $int frac dxsin frac x2sqrt cos^3 frac x2$Evaluate $int _fracpi6 ^ fracpi3 fracsin t+cos t sqrtsin 2t dt$
$begingroup$
This question already has an answer here:
What is the right first step to take when integrating $1/(2+ sin x + cos x)$? [duplicate]
2 answers
Evaluating $int P(sin x, cos x) textdx$
3 answers
$$int frac12+sin x+cos xdx.$$
My attempts:
- Let $y = sin x+cos x.implies fracdydx=cos x-sin x=y'.$
$$int frac12+sin x+cos xdx=intfrac12+yfracdyy'.$$
And I tried to use the fact $(ln x)'=1/x,$ but $(ln(2+y))'=fracy'2+y$ : the form doesn't match. So I think I've failed at this moment.
- Let $u=sin x.implies du=cos x dx=sqrt1-u^2dx.$
$$int frac12+sin x+cos xdx=intfrac12+u+sqrt1-u^2fracdusqrt1-u^2.$$
And it looks more uncomputable.
Both of my attempts are at a dead end. How to evaluate this integral? Any help would be appreciated.
calculus integration indefinite-integrals
$endgroup$
marked as duplicate by Martin R, Robert Z
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Mar 25 at 8:48
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
What is the right first step to take when integrating $1/(2+ sin x + cos x)$? [duplicate]
2 answers
Evaluating $int P(sin x, cos x) textdx$
3 answers
$$int frac12+sin x+cos xdx.$$
My attempts:
- Let $y = sin x+cos x.implies fracdydx=cos x-sin x=y'.$
$$int frac12+sin x+cos xdx=intfrac12+yfracdyy'.$$
And I tried to use the fact $(ln x)'=1/x,$ but $(ln(2+y))'=fracy'2+y$ : the form doesn't match. So I think I've failed at this moment.
- Let $u=sin x.implies du=cos x dx=sqrt1-u^2dx.$
$$int frac12+sin x+cos xdx=intfrac12+u+sqrt1-u^2fracdusqrt1-u^2.$$
And it looks more uncomputable.
Both of my attempts are at a dead end. How to evaluate this integral? Any help would be appreciated.
calculus integration indefinite-integrals
$endgroup$
marked as duplicate by Martin R, Robert Z
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Mar 25 at 8:48
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
What is the right first step to take when integrating $1/(2+ sin x + cos x)$? [duplicate]
2 answers
Evaluating $int P(sin x, cos x) textdx$
3 answers
$$int frac12+sin x+cos xdx.$$
My attempts:
- Let $y = sin x+cos x.implies fracdydx=cos x-sin x=y'.$
$$int frac12+sin x+cos xdx=intfrac12+yfracdyy'.$$
And I tried to use the fact $(ln x)'=1/x,$ but $(ln(2+y))'=fracy'2+y$ : the form doesn't match. So I think I've failed at this moment.
- Let $u=sin x.implies du=cos x dx=sqrt1-u^2dx.$
$$int frac12+sin x+cos xdx=intfrac12+u+sqrt1-u^2fracdusqrt1-u^2.$$
And it looks more uncomputable.
Both of my attempts are at a dead end. How to evaluate this integral? Any help would be appreciated.
calculus integration indefinite-integrals
$endgroup$
This question already has an answer here:
What is the right first step to take when integrating $1/(2+ sin x + cos x)$? [duplicate]
2 answers
Evaluating $int P(sin x, cos x) textdx$
3 answers
$$int frac12+sin x+cos xdx.$$
My attempts:
- Let $y = sin x+cos x.implies fracdydx=cos x-sin x=y'.$
$$int frac12+sin x+cos xdx=intfrac12+yfracdyy'.$$
And I tried to use the fact $(ln x)'=1/x,$ but $(ln(2+y))'=fracy'2+y$ : the form doesn't match. So I think I've failed at this moment.
- Let $u=sin x.implies du=cos x dx=sqrt1-u^2dx.$
$$int frac12+sin x+cos xdx=intfrac12+u+sqrt1-u^2fracdusqrt1-u^2.$$
And it looks more uncomputable.
Both of my attempts are at a dead end. How to evaluate this integral? Any help would be appreciated.
This question already has an answer here:
What is the right first step to take when integrating $1/(2+ sin x + cos x)$? [duplicate]
2 answers
Evaluating $int P(sin x, cos x) textdx$
3 answers
calculus integration indefinite-integrals
calculus integration indefinite-integrals
asked Mar 25 at 7:51
user642721user642721
735
735
marked as duplicate by Martin R, Robert Z
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Mar 25 at 8:48
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin R, Robert Z
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
Mar 25 at 8:48
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Use the so-called Weierstrass substitution
$$sin(x)=frac2t1+t^2$$
$$cos(x)=frac1-t^21+t^2$$
$$dx=frac21+t^2dt$$
A possible solution is given by $$sqrt 2arctan left( 1/4, left( 2,tan left( x/2 right) +2
right) sqrt 2 right)
+C$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$textLet beginbmatrixsin x \ cos x \ mathrm dxendbmatrix=beginbmatrixdfrac2t1+t^2\ dfrac1-t^21+t^2\ dfrac2mathrm dt1+t^2endbmatrix$$
This transforms $R(sin x, cos x)$ to a rational function in $t$ and you can proceed with Partial Fraction Decomposition.
$endgroup$
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Use the so-called Weierstrass substitution
$$sin(x)=frac2t1+t^2$$
$$cos(x)=frac1-t^21+t^2$$
$$dx=frac21+t^2dt$$
A possible solution is given by $$sqrt 2arctan left( 1/4, left( 2,tan left( x/2 right) +2
right) sqrt 2 right)
+C$$
$endgroup$
add a comment |
$begingroup$
Hint: Use the so-called Weierstrass substitution
$$sin(x)=frac2t1+t^2$$
$$cos(x)=frac1-t^21+t^2$$
$$dx=frac21+t^2dt$$
A possible solution is given by $$sqrt 2arctan left( 1/4, left( 2,tan left( x/2 right) +2
right) sqrt 2 right)
+C$$
$endgroup$
add a comment |
$begingroup$
Hint: Use the so-called Weierstrass substitution
$$sin(x)=frac2t1+t^2$$
$$cos(x)=frac1-t^21+t^2$$
$$dx=frac21+t^2dt$$
A possible solution is given by $$sqrt 2arctan left( 1/4, left( 2,tan left( x/2 right) +2
right) sqrt 2 right)
+C$$
$endgroup$
Hint: Use the so-called Weierstrass substitution
$$sin(x)=frac2t1+t^2$$
$$cos(x)=frac1-t^21+t^2$$
$$dx=frac21+t^2dt$$
A possible solution is given by $$sqrt 2arctan left( 1/4, left( 2,tan left( x/2 right) +2
right) sqrt 2 right)
+C$$
edited Mar 25 at 8:14
answered Mar 25 at 7:54
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79k42867
79k42867
add a comment |
add a comment |
$begingroup$
Hint:
$$textLet beginbmatrixsin x \ cos x \ mathrm dxendbmatrix=beginbmatrixdfrac2t1+t^2\ dfrac1-t^21+t^2\ dfrac2mathrm dt1+t^2endbmatrix$$
This transforms $R(sin x, cos x)$ to a rational function in $t$ and you can proceed with Partial Fraction Decomposition.
$endgroup$
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
add a comment |
$begingroup$
Hint:
$$textLet beginbmatrixsin x \ cos x \ mathrm dxendbmatrix=beginbmatrixdfrac2t1+t^2\ dfrac1-t^21+t^2\ dfrac2mathrm dt1+t^2endbmatrix$$
This transforms $R(sin x, cos x)$ to a rational function in $t$ and you can proceed with Partial Fraction Decomposition.
$endgroup$
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
add a comment |
$begingroup$
Hint:
$$textLet beginbmatrixsin x \ cos x \ mathrm dxendbmatrix=beginbmatrixdfrac2t1+t^2\ dfrac1-t^21+t^2\ dfrac2mathrm dt1+t^2endbmatrix$$
This transforms $R(sin x, cos x)$ to a rational function in $t$ and you can proceed with Partial Fraction Decomposition.
$endgroup$
Hint:
$$textLet beginbmatrixsin x \ cos x \ mathrm dxendbmatrix=beginbmatrixdfrac2t1+t^2\ dfrac1-t^21+t^2\ dfrac2mathrm dt1+t^2endbmatrix$$
This transforms $R(sin x, cos x)$ to a rational function in $t$ and you can proceed with Partial Fraction Decomposition.
answered Mar 25 at 7:55
Paras KhoslaParas Khosla
3,278627
3,278627
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
add a comment |
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
1
1
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
This is not a solution, it should be posted as a comment instead (flagged).
$endgroup$
– user619699
Mar 25 at 8:09
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
$begingroup$
That's exactly my point. Hints are meant to be posted as comments.
$endgroup$
– user619699
Mar 25 at 8:16
add a comment |