Proving existence of integer solution in $x^2y^3+z^2=6$Perfect square modulo $n = pq$Factor the modulusSquare roots in finite fields, i.e. mod $p^m$Determine the number of solutions of $x^pequiv 1mod p^h$ using primitive rootsExplain solution of this system of non-linear congruence equationsExtended Euclid’s Algorithm of GCD(19,7)Find the smallest integer $a > 2$ such that $2|a, 3|a + 1, 4|a + 2, 5|a + 3, 6|a + 4$What modulus should be chosen when proving impossibility of $|2^m-3^n|=N$?Existence of solutions to DLP and Primitive roots mod $p$$n^2 equiv (p-1) mod p$ where $p$ is a Pythagorean prime.

Why airport relocation isn't done gradually?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore

What is the command to reset a PC without deleting any files

Why is the design of haulage companies so “special”?

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Could a US political party gain complete control over the government by removing checks & balances?

What causes the sudden spool-up sound from an F-16 when enabling afterburner?

Pristine Bit Checking

Add an angle to a sphere

Is every set a filtered colimit of finite sets?

Patience, young "Padovan"

Is this food a bread or a loaf?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

Why was the "bread communication" in the arena of Catching Fire left out in the movie?

How to make payment on the internet without leaving a money trail?

How to move the player while also allowing forces to affect it

Is there a familial term for apples and pears?

How to make particles emit from certain parts of a 3D object?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

I see my dog run

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Typesetting a double Over Dot on top of a symbol



Proving existence of integer solution in $x^2y^3+z^2=6$


Perfect square modulo $n = pq$Factor the modulusSquare roots in finite fields, i.e. mod $p^m$Determine the number of solutions of $x^pequiv 1mod p^h$ using primitive rootsExplain solution of this system of non-linear congruence equationsExtended Euclid’s Algorithm of GCD(19,7)Find the smallest integer $a > 2$ such that $2|a, 3|a + 1, 4|a + 2, 5|a + 3, 6|a + 4$What modulus should be chosen when proving impossibility of $|2^m-3^n|=N$?Existence of solutions to DLP and Primitive roots mod $p$$n^2 equiv (p-1) mod p$ where $p$ is a Pythagorean prime.













5












$begingroup$


I've been working with this curve lately, but I haven't been able to solve this case yet.



$$x^2y^3+z^2=6$$



I achived an algorithm to check for solutions depending on the values of $z$ and got that no solution exist when $|z|leq 10^5$. I could try augmenting the size of the search, but since the algorithm runs in $O(n^2)$ the amount of time it would take would jump to 1 hour just to check $|z|leq 10^6$ and $5$ days for $|z|leq 10^7$.



Right now I know that if a solution exist, then $x,z equiv 1 mod2$ and that $y equiv 1 mod4$ and that $2 not | z,x,y $ and $3 not | z,x,y$, also $(xy,z)=1$.



The question is not to find the values of $x,y$ or $z$, but to prove whether a solution over integers exist or not. Any help, hints or solutions would be appreciated.



EDIT: I think that with python and multiprocessing I've check that for $|z|leq 10^8$ there doesn't exist a solution. But I feel that I've coded something wrong since the program run much faster than it should have.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
    $endgroup$
    – Wojowu
    Mar 22 at 16:08










  • $begingroup$
    @Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
    $endgroup$
    – Erik T.
    Mar 22 at 16:37






  • 2




    $begingroup$
    FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
    $endgroup$
    – Poon Levi
    Mar 22 at 17:19











  • $begingroup$
    @PoonLevi Wow, nice solution, how did you find it?
    $endgroup$
    – Erik T.
    Mar 22 at 17:44










  • $begingroup$
    @ErikT. I just did some manual brute forcing with the FindInstance function
    $endgroup$
    – Poon Levi
    Mar 23 at 5:36















5












$begingroup$


I've been working with this curve lately, but I haven't been able to solve this case yet.



$$x^2y^3+z^2=6$$



I achived an algorithm to check for solutions depending on the values of $z$ and got that no solution exist when $|z|leq 10^5$. I could try augmenting the size of the search, but since the algorithm runs in $O(n^2)$ the amount of time it would take would jump to 1 hour just to check $|z|leq 10^6$ and $5$ days for $|z|leq 10^7$.



Right now I know that if a solution exist, then $x,z equiv 1 mod2$ and that $y equiv 1 mod4$ and that $2 not | z,x,y $ and $3 not | z,x,y$, also $(xy,z)=1$.



The question is not to find the values of $x,y$ or $z$, but to prove whether a solution over integers exist or not. Any help, hints or solutions would be appreciated.



EDIT: I think that with python and multiprocessing I've check that for $|z|leq 10^8$ there doesn't exist a solution. But I feel that I've coded something wrong since the program run much faster than it should have.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
    $endgroup$
    – Wojowu
    Mar 22 at 16:08










  • $begingroup$
    @Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
    $endgroup$
    – Erik T.
    Mar 22 at 16:37






  • 2




    $begingroup$
    FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
    $endgroup$
    – Poon Levi
    Mar 22 at 17:19











  • $begingroup$
    @PoonLevi Wow, nice solution, how did you find it?
    $endgroup$
    – Erik T.
    Mar 22 at 17:44










  • $begingroup$
    @ErikT. I just did some manual brute forcing with the FindInstance function
    $endgroup$
    – Poon Levi
    Mar 23 at 5:36













5












5








5


4



$begingroup$


I've been working with this curve lately, but I haven't been able to solve this case yet.



$$x^2y^3+z^2=6$$



I achived an algorithm to check for solutions depending on the values of $z$ and got that no solution exist when $|z|leq 10^5$. I could try augmenting the size of the search, but since the algorithm runs in $O(n^2)$ the amount of time it would take would jump to 1 hour just to check $|z|leq 10^6$ and $5$ days for $|z|leq 10^7$.



Right now I know that if a solution exist, then $x,z equiv 1 mod2$ and that $y equiv 1 mod4$ and that $2 not | z,x,y $ and $3 not | z,x,y$, also $(xy,z)=1$.



The question is not to find the values of $x,y$ or $z$, but to prove whether a solution over integers exist or not. Any help, hints or solutions would be appreciated.



EDIT: I think that with python and multiprocessing I've check that for $|z|leq 10^8$ there doesn't exist a solution. But I feel that I've coded something wrong since the program run much faster than it should have.










share|cite|improve this question











$endgroup$




I've been working with this curve lately, but I haven't been able to solve this case yet.



$$x^2y^3+z^2=6$$



I achived an algorithm to check for solutions depending on the values of $z$ and got that no solution exist when $|z|leq 10^5$. I could try augmenting the size of the search, but since the algorithm runs in $O(n^2)$ the amount of time it would take would jump to 1 hour just to check $|z|leq 10^6$ and $5$ days for $|z|leq 10^7$.



Right now I know that if a solution exist, then $x,z equiv 1 mod2$ and that $y equiv 1 mod4$ and that $2 not | z,x,y $ and $3 not | z,x,y$, also $(xy,z)=1$.



The question is not to find the values of $x,y$ or $z$, but to prove whether a solution over integers exist or not. Any help, hints or solutions would be appreciated.



EDIT: I think that with python and multiprocessing I've check that for $|z|leq 10^8$ there doesn't exist a solution. But I feel that I've coded something wrong since the program run much faster than it should have.







real-analysis number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 22 at 15:51







Erik T.

















asked Mar 22 at 15:10









Erik T.Erik T.

19214




19214







  • 1




    $begingroup$
    You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
    $endgroup$
    – Wojowu
    Mar 22 at 16:08










  • $begingroup$
    @Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
    $endgroup$
    – Erik T.
    Mar 22 at 16:37






  • 2




    $begingroup$
    FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
    $endgroup$
    – Poon Levi
    Mar 22 at 17:19











  • $begingroup$
    @PoonLevi Wow, nice solution, how did you find it?
    $endgroup$
    – Erik T.
    Mar 22 at 17:44










  • $begingroup$
    @ErikT. I just did some manual brute forcing with the FindInstance function
    $endgroup$
    – Poon Levi
    Mar 23 at 5:36












  • 1




    $begingroup$
    You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
    $endgroup$
    – Wojowu
    Mar 22 at 16:08










  • $begingroup$
    @Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
    $endgroup$
    – Erik T.
    Mar 22 at 16:37






  • 2




    $begingroup$
    FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
    $endgroup$
    – Poon Levi
    Mar 22 at 17:19











  • $begingroup$
    @PoonLevi Wow, nice solution, how did you find it?
    $endgroup$
    – Erik T.
    Mar 22 at 17:44










  • $begingroup$
    @ErikT. I just did some manual brute forcing with the FindInstance function
    $endgroup$
    – Poon Levi
    Mar 23 at 5:36







1




1




$begingroup$
You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
$endgroup$
– Wojowu
Mar 22 at 16:08




$begingroup$
You can massively improve time by using the fact that $n=x^2y^3$ iff $n$ is powerful - every prime factor of $n$ appears with exponent at least $2$. Using Sage's built-in factor function I was able to check $|z|leq 10^6$ in under 20 seconds.
$endgroup$
– Wojowu
Mar 22 at 16:08












$begingroup$
@Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
$endgroup$
– Erik T.
Mar 22 at 16:37




$begingroup$
@Wojowu that was the idea I used, but I implemented the factorization algorithm myself. I'll try that implementation instead. Thanks
$endgroup$
– Erik T.
Mar 22 at 16:37




2




2




$begingroup$
FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
$endgroup$
– Poon Levi
Mar 22 at 17:19





$begingroup$
FWIW, from Mathematica, the smallest value of $|y|$ for which this has a solution seems to be $y=-19$ with $(x,z)=(755031379,62531004125)$, but I am not sure about this.
$endgroup$
– Poon Levi
Mar 22 at 17:19













$begingroup$
@PoonLevi Wow, nice solution, how did you find it?
$endgroup$
– Erik T.
Mar 22 at 17:44




$begingroup$
@PoonLevi Wow, nice solution, how did you find it?
$endgroup$
– Erik T.
Mar 22 at 17:44












$begingroup$
@ErikT. I just did some manual brute forcing with the FindInstance function
$endgroup$
– Poon Levi
Mar 23 at 5:36




$begingroup$
@ErikT. I just did some manual brute forcing with the FindInstance function
$endgroup$
– Poon Levi
Mar 23 at 5:36










1 Answer
1






active

oldest

votes


















1












$begingroup$

ADDED: works pretty well for $y = -p,$ where $p$ is a prime and $p equiv -5 pmod24.$ Not always, though, there is no solution in integers to $u^2 - 499 v^2 = 6,$ so there cannot be a solution to $z^2 - 499^3 x^2 = 6,$



As in comment by Poon,



$$ 62531004125^2 - 6859 cdot 755031379^2 = 6 $$
$$ 30062417279159968032434332377499679191^2 - 6859 cdot 362989027474817934968547501096752545^2 = 6 $$
are the two smallest solutions with $y = -19$



This is a Pell type situation..



Next is $y = -43.$



$$ 8524568252330795722226762076275477^2 - 79507 cdot 30232197004259457995489433581233^2 = 6 $$



$$ 7854330327479105748865242264224583147937033544548000861492635087111452983686976831425073648904157700425958139623153797892698716197^2 - 79507 cdot 1091798726642836794174438412786249442561116671851858490296127998493079755047027851686091414930149044443059275247490273988265975073^2 = 6 $$



$19 pmod 24,$ or $-5 pmod 24$ looks good, jump to $y=-67$



$$ 282978368450687434487209373191993925035994947255483507^2 - 300763 cdot 515989702066780538602608723807499847473549946045669^2 = 6 $$
$$ 110282895315930497927912550392745703024272661444749938273795258966953853545781325097922911621692636895662478761651920330433345436002171835031498514609892669112804144738962046702905275306924383919904704053765669273732362771438086818759096600035555210393331272621715089906882939770617^2 - 300763 cdot 201092537951519476578846016654832921687447975787740751416540268301538352543770725685782163606655569263151546549701485320486846032648563723182340355499316131383039221816513366591020013230115379554131047351811803703438819429350858064042234604275684238200002441987024851219462842279^2 = 6 $$



Alright, $y=-91$ does not work, so it is probably primes $p equiv -5 pmod 24, $



Looks good: $y = -139$ works.



$$4362811041355070169863445353127930955459611243393190431129982455344444937966635765034690725017372595556332974381641720288818463876300492140964198599085172852063910548429431998295054330240877818521750650943853474767971595481380748602727279462883776818584948606778731999374536671484774081257730189572990126422750941506328066671948299736754296627083409459327142431344285253530904973914932476112673827164600483235886537816825709905101946637717937589365141741638476449995905^2 - 2685619 cdot 2662221602563249187278263196011187615830538137637142943172206847128695186087154957324454563072568300849581804322115608951178431618508361010826207991363516489555641531605807855706702830569730399355959940637296610198308891993171988598931443596581366199909035947670242973782535283742571317010626567192123563836486926084664553687222659057469486167968416946690621995773225236487161717059270246838151043190279154072191947271777597482296371378305290636442120248659630720699^2 = 6 $$



$$ 11007229320114200682613076077054270674493469083551395090272400450528009167811973532453164230028506749238868355270609196939003181071165527762688822477732870085553734659733958280600416037711133666637554796387480108123093268249334915679222608686278074350575513887596916117811796252204388381986306317919874745606321543530836091755198128978452469078117805119958799386852835463813171493204121621031603301970267358021486072087211213638671800520653184667508559060289724518769975994491764389949401683257784292501138366997875642534662126840960900976803282849392676436506058878390727089164075298305914748170136999780085836991430800327841415662720459718357825397573172976708908467441^2 - 2685619 cdot 6716697881848674838156030386241616967270051136862684282955991537338414961773579582932757141004204932054213610185226058428383136198936104632942497489498739897183325583340951152435956413801114255489130165449836905051326165370830554673259419604890586134665267687698856933901633921567579748923093505649829262337020641217111875006923069411778584596026715953822127592173142902673636449348881975583202914018304502788869342977433804925999933660151442708630639152564344393622683488924533630738934557423091516094843646237584273637443239810351573953018195234525958355653029554536372430979361344097937950355948103639632777321526741953229033254611279820660546487889155631849994795^2 = 6 $$



$y = -163 $ works. The others should be checked for class number! No, $139$ has class number 3.



$$
1085997992037838057157328137528530814161327411705546203392088990536040293^2 - 4330747 cdot 521852316521211748718181001351655538497525757942306914225856323090563^2 = 6 $$



$$ 50576439676678868925447962668907434500838480927375612223861414693409656592498369002412775393461481995344704306058443464631047373837930992505267663441324334534575755546957820383354011427592442618572553822492422632438018310472471467898207758462496052055942015486413777383860175293508915160725621756472206275639559775926508637417532793267711813496401310961017300099032326961359121416479939614082943062346592497129301169840684667781108633285175838272455967344224725866133380586503707411632734800342621002287656549985786259734994462255794013879381219457810712405084283774220828444140059155951479917295341262660858326466541291848167815166877848998169467570609203031564636509860322954392994510333265978746217370992701911980229349147987494073342207262560127339452333844537013716461592403989956476819621648310312838004247585673708244092703910695114947918019837457181216465905991224195278477515712580521442345725333566315384496982715121821384411921111090497302852848529853789432402185245489658332331342402733989663728321530595214247562396845918152405928944606618632203463997552998841227239534262770964180949700862983087031814190544748296635415256018314980663318640218710377201213304383260086867630769339280626456705440420391795961162063402561211243834067151983^2 - 4330747 cdot 24303389509168264155926836231677339583236279792966852959122818227864577731252374449598975246414912863111465364548050391636522567455569326936167362733978208903502309971646876492298053014761680209263210334367950807323938188804032444180691208424432641560933430829642849222471126855975046976264861142200196090873689848421843657191122679730405457613374464333528713595028025499158915631933516131901486678847790154871195366492722123901490942121147791994088903595812840508108723450617408520351474791501477137500457342580798802860226722483071140092607989410381522583658260015263828479974612715845634569484085007653986257235669726683443743485813491066481117864482736645186942197877484560957415923165525303520724765971741826705012467970971652276787231995434582749181129198639619283181022181454009410979226141089115582679800903885255370692759102173591511270474888363142061555783426807681868230735428982849314717966630981691678606125268941949114427742580036471039151646099484825259176902899828540485246941295441813001097452114340209278442506644192595084839750875848820948944425473440101086124918167955646103531186497403430181161785931987860726637908855991154397153654665336597089114095843532096882086827889787605551124993774754527399260647535995679182021376817^2 = 6 $$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158262%2fproving-existence-of-integer-solution-in-x2y3z2-6%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    ADDED: works pretty well for $y = -p,$ where $p$ is a prime and $p equiv -5 pmod24.$ Not always, though, there is no solution in integers to $u^2 - 499 v^2 = 6,$ so there cannot be a solution to $z^2 - 499^3 x^2 = 6,$



    As in comment by Poon,



    $$ 62531004125^2 - 6859 cdot 755031379^2 = 6 $$
    $$ 30062417279159968032434332377499679191^2 - 6859 cdot 362989027474817934968547501096752545^2 = 6 $$
    are the two smallest solutions with $y = -19$



    This is a Pell type situation..



    Next is $y = -43.$



    $$ 8524568252330795722226762076275477^2 - 79507 cdot 30232197004259457995489433581233^2 = 6 $$



    $$ 7854330327479105748865242264224583147937033544548000861492635087111452983686976831425073648904157700425958139623153797892698716197^2 - 79507 cdot 1091798726642836794174438412786249442561116671851858490296127998493079755047027851686091414930149044443059275247490273988265975073^2 = 6 $$



    $19 pmod 24,$ or $-5 pmod 24$ looks good, jump to $y=-67$



    $$ 282978368450687434487209373191993925035994947255483507^2 - 300763 cdot 515989702066780538602608723807499847473549946045669^2 = 6 $$
    $$ 110282895315930497927912550392745703024272661444749938273795258966953853545781325097922911621692636895662478761651920330433345436002171835031498514609892669112804144738962046702905275306924383919904704053765669273732362771438086818759096600035555210393331272621715089906882939770617^2 - 300763 cdot 201092537951519476578846016654832921687447975787740751416540268301538352543770725685782163606655569263151546549701485320486846032648563723182340355499316131383039221816513366591020013230115379554131047351811803703438819429350858064042234604275684238200002441987024851219462842279^2 = 6 $$



    Alright, $y=-91$ does not work, so it is probably primes $p equiv -5 pmod 24, $



    Looks good: $y = -139$ works.



    $$4362811041355070169863445353127930955459611243393190431129982455344444937966635765034690725017372595556332974381641720288818463876300492140964198599085172852063910548429431998295054330240877818521750650943853474767971595481380748602727279462883776818584948606778731999374536671484774081257730189572990126422750941506328066671948299736754296627083409459327142431344285253530904973914932476112673827164600483235886537816825709905101946637717937589365141741638476449995905^2 - 2685619 cdot 2662221602563249187278263196011187615830538137637142943172206847128695186087154957324454563072568300849581804322115608951178431618508361010826207991363516489555641531605807855706702830569730399355959940637296610198308891993171988598931443596581366199909035947670242973782535283742571317010626567192123563836486926084664553687222659057469486167968416946690621995773225236487161717059270246838151043190279154072191947271777597482296371378305290636442120248659630720699^2 = 6 $$



    $$ 11007229320114200682613076077054270674493469083551395090272400450528009167811973532453164230028506749238868355270609196939003181071165527762688822477732870085553734659733958280600416037711133666637554796387480108123093268249334915679222608686278074350575513887596916117811796252204388381986306317919874745606321543530836091755198128978452469078117805119958799386852835463813171493204121621031603301970267358021486072087211213638671800520653184667508559060289724518769975994491764389949401683257784292501138366997875642534662126840960900976803282849392676436506058878390727089164075298305914748170136999780085836991430800327841415662720459718357825397573172976708908467441^2 - 2685619 cdot 6716697881848674838156030386241616967270051136862684282955991537338414961773579582932757141004204932054213610185226058428383136198936104632942497489498739897183325583340951152435956413801114255489130165449836905051326165370830554673259419604890586134665267687698856933901633921567579748923093505649829262337020641217111875006923069411778584596026715953822127592173142902673636449348881975583202914018304502788869342977433804925999933660151442708630639152564344393622683488924533630738934557423091516094843646237584273637443239810351573953018195234525958355653029554536372430979361344097937950355948103639632777321526741953229033254611279820660546487889155631849994795^2 = 6 $$



    $y = -163 $ works. The others should be checked for class number! No, $139$ has class number 3.



    $$
    1085997992037838057157328137528530814161327411705546203392088990536040293^2 - 4330747 cdot 521852316521211748718181001351655538497525757942306914225856323090563^2 = 6 $$



    $$ 50576439676678868925447962668907434500838480927375612223861414693409656592498369002412775393461481995344704306058443464631047373837930992505267663441324334534575755546957820383354011427592442618572553822492422632438018310472471467898207758462496052055942015486413777383860175293508915160725621756472206275639559775926508637417532793267711813496401310961017300099032326961359121416479939614082943062346592497129301169840684667781108633285175838272455967344224725866133380586503707411632734800342621002287656549985786259734994462255794013879381219457810712405084283774220828444140059155951479917295341262660858326466541291848167815166877848998169467570609203031564636509860322954392994510333265978746217370992701911980229349147987494073342207262560127339452333844537013716461592403989956476819621648310312838004247585673708244092703910695114947918019837457181216465905991224195278477515712580521442345725333566315384496982715121821384411921111090497302852848529853789432402185245489658332331342402733989663728321530595214247562396845918152405928944606618632203463997552998841227239534262770964180949700862983087031814190544748296635415256018314980663318640218710377201213304383260086867630769339280626456705440420391795961162063402561211243834067151983^2 - 4330747 cdot 24303389509168264155926836231677339583236279792966852959122818227864577731252374449598975246414912863111465364548050391636522567455569326936167362733978208903502309971646876492298053014761680209263210334367950807323938188804032444180691208424432641560933430829642849222471126855975046976264861142200196090873689848421843657191122679730405457613374464333528713595028025499158915631933516131901486678847790154871195366492722123901490942121147791994088903595812840508108723450617408520351474791501477137500457342580798802860226722483071140092607989410381522583658260015263828479974612715845634569484085007653986257235669726683443743485813491066481117864482736645186942197877484560957415923165525303520724765971741826705012467970971652276787231995434582749181129198639619283181022181454009410979226141089115582679800903885255370692759102173591511270474888363142061555783426807681868230735428982849314717966630981691678606125268941949114427742580036471039151646099484825259176902899828540485246941295441813001097452114340209278442506644192595084839750875848820948944425473440101086124918167955646103531186497403430181161785931987860726637908855991154397153654665336597089114095843532096882086827889787605551124993774754527399260647535995679182021376817^2 = 6 $$






    share|cite|improve this answer











    $endgroup$

















      1












      $begingroup$

      ADDED: works pretty well for $y = -p,$ where $p$ is a prime and $p equiv -5 pmod24.$ Not always, though, there is no solution in integers to $u^2 - 499 v^2 = 6,$ so there cannot be a solution to $z^2 - 499^3 x^2 = 6,$



      As in comment by Poon,



      $$ 62531004125^2 - 6859 cdot 755031379^2 = 6 $$
      $$ 30062417279159968032434332377499679191^2 - 6859 cdot 362989027474817934968547501096752545^2 = 6 $$
      are the two smallest solutions with $y = -19$



      This is a Pell type situation..



      Next is $y = -43.$



      $$ 8524568252330795722226762076275477^2 - 79507 cdot 30232197004259457995489433581233^2 = 6 $$



      $$ 7854330327479105748865242264224583147937033544548000861492635087111452983686976831425073648904157700425958139623153797892698716197^2 - 79507 cdot 1091798726642836794174438412786249442561116671851858490296127998493079755047027851686091414930149044443059275247490273988265975073^2 = 6 $$



      $19 pmod 24,$ or $-5 pmod 24$ looks good, jump to $y=-67$



      $$ 282978368450687434487209373191993925035994947255483507^2 - 300763 cdot 515989702066780538602608723807499847473549946045669^2 = 6 $$
      $$ 110282895315930497927912550392745703024272661444749938273795258966953853545781325097922911621692636895662478761651920330433345436002171835031498514609892669112804144738962046702905275306924383919904704053765669273732362771438086818759096600035555210393331272621715089906882939770617^2 - 300763 cdot 201092537951519476578846016654832921687447975787740751416540268301538352543770725685782163606655569263151546549701485320486846032648563723182340355499316131383039221816513366591020013230115379554131047351811803703438819429350858064042234604275684238200002441987024851219462842279^2 = 6 $$



      Alright, $y=-91$ does not work, so it is probably primes $p equiv -5 pmod 24, $



      Looks good: $y = -139$ works.



      $$4362811041355070169863445353127930955459611243393190431129982455344444937966635765034690725017372595556332974381641720288818463876300492140964198599085172852063910548429431998295054330240877818521750650943853474767971595481380748602727279462883776818584948606778731999374536671484774081257730189572990126422750941506328066671948299736754296627083409459327142431344285253530904973914932476112673827164600483235886537816825709905101946637717937589365141741638476449995905^2 - 2685619 cdot 2662221602563249187278263196011187615830538137637142943172206847128695186087154957324454563072568300849581804322115608951178431618508361010826207991363516489555641531605807855706702830569730399355959940637296610198308891993171988598931443596581366199909035947670242973782535283742571317010626567192123563836486926084664553687222659057469486167968416946690621995773225236487161717059270246838151043190279154072191947271777597482296371378305290636442120248659630720699^2 = 6 $$



      $$ 11007229320114200682613076077054270674493469083551395090272400450528009167811973532453164230028506749238868355270609196939003181071165527762688822477732870085553734659733958280600416037711133666637554796387480108123093268249334915679222608686278074350575513887596916117811796252204388381986306317919874745606321543530836091755198128978452469078117805119958799386852835463813171493204121621031603301970267358021486072087211213638671800520653184667508559060289724518769975994491764389949401683257784292501138366997875642534662126840960900976803282849392676436506058878390727089164075298305914748170136999780085836991430800327841415662720459718357825397573172976708908467441^2 - 2685619 cdot 6716697881848674838156030386241616967270051136862684282955991537338414961773579582932757141004204932054213610185226058428383136198936104632942497489498739897183325583340951152435956413801114255489130165449836905051326165370830554673259419604890586134665267687698856933901633921567579748923093505649829262337020641217111875006923069411778584596026715953822127592173142902673636449348881975583202914018304502788869342977433804925999933660151442708630639152564344393622683488924533630738934557423091516094843646237584273637443239810351573953018195234525958355653029554536372430979361344097937950355948103639632777321526741953229033254611279820660546487889155631849994795^2 = 6 $$



      $y = -163 $ works. The others should be checked for class number! No, $139$ has class number 3.



      $$
      1085997992037838057157328137528530814161327411705546203392088990536040293^2 - 4330747 cdot 521852316521211748718181001351655538497525757942306914225856323090563^2 = 6 $$



      $$ 50576439676678868925447962668907434500838480927375612223861414693409656592498369002412775393461481995344704306058443464631047373837930992505267663441324334534575755546957820383354011427592442618572553822492422632438018310472471467898207758462496052055942015486413777383860175293508915160725621756472206275639559775926508637417532793267711813496401310961017300099032326961359121416479939614082943062346592497129301169840684667781108633285175838272455967344224725866133380586503707411632734800342621002287656549985786259734994462255794013879381219457810712405084283774220828444140059155951479917295341262660858326466541291848167815166877848998169467570609203031564636509860322954392994510333265978746217370992701911980229349147987494073342207262560127339452333844537013716461592403989956476819621648310312838004247585673708244092703910695114947918019837457181216465905991224195278477515712580521442345725333566315384496982715121821384411921111090497302852848529853789432402185245489658332331342402733989663728321530595214247562396845918152405928944606618632203463997552998841227239534262770964180949700862983087031814190544748296635415256018314980663318640218710377201213304383260086867630769339280626456705440420391795961162063402561211243834067151983^2 - 4330747 cdot 24303389509168264155926836231677339583236279792966852959122818227864577731252374449598975246414912863111465364548050391636522567455569326936167362733978208903502309971646876492298053014761680209263210334367950807323938188804032444180691208424432641560933430829642849222471126855975046976264861142200196090873689848421843657191122679730405457613374464333528713595028025499158915631933516131901486678847790154871195366492722123901490942121147791994088903595812840508108723450617408520351474791501477137500457342580798802860226722483071140092607989410381522583658260015263828479974612715845634569484085007653986257235669726683443743485813491066481117864482736645186942197877484560957415923165525303520724765971741826705012467970971652276787231995434582749181129198639619283181022181454009410979226141089115582679800903885255370692759102173591511270474888363142061555783426807681868230735428982849314717966630981691678606125268941949114427742580036471039151646099484825259176902899828540485246941295441813001097452114340209278442506644192595084839750875848820948944425473440101086124918167955646103531186497403430181161785931987860726637908855991154397153654665336597089114095843532096882086827889787605551124993774754527399260647535995679182021376817^2 = 6 $$






      share|cite|improve this answer











      $endgroup$















        1












        1








        1





        $begingroup$

        ADDED: works pretty well for $y = -p,$ where $p$ is a prime and $p equiv -5 pmod24.$ Not always, though, there is no solution in integers to $u^2 - 499 v^2 = 6,$ so there cannot be a solution to $z^2 - 499^3 x^2 = 6,$



        As in comment by Poon,



        $$ 62531004125^2 - 6859 cdot 755031379^2 = 6 $$
        $$ 30062417279159968032434332377499679191^2 - 6859 cdot 362989027474817934968547501096752545^2 = 6 $$
        are the two smallest solutions with $y = -19$



        This is a Pell type situation..



        Next is $y = -43.$



        $$ 8524568252330795722226762076275477^2 - 79507 cdot 30232197004259457995489433581233^2 = 6 $$



        $$ 7854330327479105748865242264224583147937033544548000861492635087111452983686976831425073648904157700425958139623153797892698716197^2 - 79507 cdot 1091798726642836794174438412786249442561116671851858490296127998493079755047027851686091414930149044443059275247490273988265975073^2 = 6 $$



        $19 pmod 24,$ or $-5 pmod 24$ looks good, jump to $y=-67$



        $$ 282978368450687434487209373191993925035994947255483507^2 - 300763 cdot 515989702066780538602608723807499847473549946045669^2 = 6 $$
        $$ 110282895315930497927912550392745703024272661444749938273795258966953853545781325097922911621692636895662478761651920330433345436002171835031498514609892669112804144738962046702905275306924383919904704053765669273732362771438086818759096600035555210393331272621715089906882939770617^2 - 300763 cdot 201092537951519476578846016654832921687447975787740751416540268301538352543770725685782163606655569263151546549701485320486846032648563723182340355499316131383039221816513366591020013230115379554131047351811803703438819429350858064042234604275684238200002441987024851219462842279^2 = 6 $$



        Alright, $y=-91$ does not work, so it is probably primes $p equiv -5 pmod 24, $



        Looks good: $y = -139$ works.



        $$4362811041355070169863445353127930955459611243393190431129982455344444937966635765034690725017372595556332974381641720288818463876300492140964198599085172852063910548429431998295054330240877818521750650943853474767971595481380748602727279462883776818584948606778731999374536671484774081257730189572990126422750941506328066671948299736754296627083409459327142431344285253530904973914932476112673827164600483235886537816825709905101946637717937589365141741638476449995905^2 - 2685619 cdot 2662221602563249187278263196011187615830538137637142943172206847128695186087154957324454563072568300849581804322115608951178431618508361010826207991363516489555641531605807855706702830569730399355959940637296610198308891993171988598931443596581366199909035947670242973782535283742571317010626567192123563836486926084664553687222659057469486167968416946690621995773225236487161717059270246838151043190279154072191947271777597482296371378305290636442120248659630720699^2 = 6 $$



        $$ 11007229320114200682613076077054270674493469083551395090272400450528009167811973532453164230028506749238868355270609196939003181071165527762688822477732870085553734659733958280600416037711133666637554796387480108123093268249334915679222608686278074350575513887596916117811796252204388381986306317919874745606321543530836091755198128978452469078117805119958799386852835463813171493204121621031603301970267358021486072087211213638671800520653184667508559060289724518769975994491764389949401683257784292501138366997875642534662126840960900976803282849392676436506058878390727089164075298305914748170136999780085836991430800327841415662720459718357825397573172976708908467441^2 - 2685619 cdot 6716697881848674838156030386241616967270051136862684282955991537338414961773579582932757141004204932054213610185226058428383136198936104632942497489498739897183325583340951152435956413801114255489130165449836905051326165370830554673259419604890586134665267687698856933901633921567579748923093505649829262337020641217111875006923069411778584596026715953822127592173142902673636449348881975583202914018304502788869342977433804925999933660151442708630639152564344393622683488924533630738934557423091516094843646237584273637443239810351573953018195234525958355653029554536372430979361344097937950355948103639632777321526741953229033254611279820660546487889155631849994795^2 = 6 $$



        $y = -163 $ works. The others should be checked for class number! No, $139$ has class number 3.



        $$
        1085997992037838057157328137528530814161327411705546203392088990536040293^2 - 4330747 cdot 521852316521211748718181001351655538497525757942306914225856323090563^2 = 6 $$



        $$ 50576439676678868925447962668907434500838480927375612223861414693409656592498369002412775393461481995344704306058443464631047373837930992505267663441324334534575755546957820383354011427592442618572553822492422632438018310472471467898207758462496052055942015486413777383860175293508915160725621756472206275639559775926508637417532793267711813496401310961017300099032326961359121416479939614082943062346592497129301169840684667781108633285175838272455967344224725866133380586503707411632734800342621002287656549985786259734994462255794013879381219457810712405084283774220828444140059155951479917295341262660858326466541291848167815166877848998169467570609203031564636509860322954392994510333265978746217370992701911980229349147987494073342207262560127339452333844537013716461592403989956476819621648310312838004247585673708244092703910695114947918019837457181216465905991224195278477515712580521442345725333566315384496982715121821384411921111090497302852848529853789432402185245489658332331342402733989663728321530595214247562396845918152405928944606618632203463997552998841227239534262770964180949700862983087031814190544748296635415256018314980663318640218710377201213304383260086867630769339280626456705440420391795961162063402561211243834067151983^2 - 4330747 cdot 24303389509168264155926836231677339583236279792966852959122818227864577731252374449598975246414912863111465364548050391636522567455569326936167362733978208903502309971646876492298053014761680209263210334367950807323938188804032444180691208424432641560933430829642849222471126855975046976264861142200196090873689848421843657191122679730405457613374464333528713595028025499158915631933516131901486678847790154871195366492722123901490942121147791994088903595812840508108723450617408520351474791501477137500457342580798802860226722483071140092607989410381522583658260015263828479974612715845634569484085007653986257235669726683443743485813491066481117864482736645186942197877484560957415923165525303520724765971741826705012467970971652276787231995434582749181129198639619283181022181454009410979226141089115582679800903885255370692759102173591511270474888363142061555783426807681868230735428982849314717966630981691678606125268941949114427742580036471039151646099484825259176902899828540485246941295441813001097452114340209278442506644192595084839750875848820948944425473440101086124918167955646103531186497403430181161785931987860726637908855991154397153654665336597089114095843532096882086827889787605551124993774754527399260647535995679182021376817^2 = 6 $$






        share|cite|improve this answer











        $endgroup$



        ADDED: works pretty well for $y = -p,$ where $p$ is a prime and $p equiv -5 pmod24.$ Not always, though, there is no solution in integers to $u^2 - 499 v^2 = 6,$ so there cannot be a solution to $z^2 - 499^3 x^2 = 6,$



        As in comment by Poon,



        $$ 62531004125^2 - 6859 cdot 755031379^2 = 6 $$
        $$ 30062417279159968032434332377499679191^2 - 6859 cdot 362989027474817934968547501096752545^2 = 6 $$
        are the two smallest solutions with $y = -19$



        This is a Pell type situation..



        Next is $y = -43.$



        $$ 8524568252330795722226762076275477^2 - 79507 cdot 30232197004259457995489433581233^2 = 6 $$



        $$ 7854330327479105748865242264224583147937033544548000861492635087111452983686976831425073648904157700425958139623153797892698716197^2 - 79507 cdot 1091798726642836794174438412786249442561116671851858490296127998493079755047027851686091414930149044443059275247490273988265975073^2 = 6 $$



        $19 pmod 24,$ or $-5 pmod 24$ looks good, jump to $y=-67$



        $$ 282978368450687434487209373191993925035994947255483507^2 - 300763 cdot 515989702066780538602608723807499847473549946045669^2 = 6 $$
        $$ 110282895315930497927912550392745703024272661444749938273795258966953853545781325097922911621692636895662478761651920330433345436002171835031498514609892669112804144738962046702905275306924383919904704053765669273732362771438086818759096600035555210393331272621715089906882939770617^2 - 300763 cdot 201092537951519476578846016654832921687447975787740751416540268301538352543770725685782163606655569263151546549701485320486846032648563723182340355499316131383039221816513366591020013230115379554131047351811803703438819429350858064042234604275684238200002441987024851219462842279^2 = 6 $$



        Alright, $y=-91$ does not work, so it is probably primes $p equiv -5 pmod 24, $



        Looks good: $y = -139$ works.



        $$4362811041355070169863445353127930955459611243393190431129982455344444937966635765034690725017372595556332974381641720288818463876300492140964198599085172852063910548429431998295054330240877818521750650943853474767971595481380748602727279462883776818584948606778731999374536671484774081257730189572990126422750941506328066671948299736754296627083409459327142431344285253530904973914932476112673827164600483235886537816825709905101946637717937589365141741638476449995905^2 - 2685619 cdot 2662221602563249187278263196011187615830538137637142943172206847128695186087154957324454563072568300849581804322115608951178431618508361010826207991363516489555641531605807855706702830569730399355959940637296610198308891993171988598931443596581366199909035947670242973782535283742571317010626567192123563836486926084664553687222659057469486167968416946690621995773225236487161717059270246838151043190279154072191947271777597482296371378305290636442120248659630720699^2 = 6 $$



        $$ 11007229320114200682613076077054270674493469083551395090272400450528009167811973532453164230028506749238868355270609196939003181071165527762688822477732870085553734659733958280600416037711133666637554796387480108123093268249334915679222608686278074350575513887596916117811796252204388381986306317919874745606321543530836091755198128978452469078117805119958799386852835463813171493204121621031603301970267358021486072087211213638671800520653184667508559060289724518769975994491764389949401683257784292501138366997875642534662126840960900976803282849392676436506058878390727089164075298305914748170136999780085836991430800327841415662720459718357825397573172976708908467441^2 - 2685619 cdot 6716697881848674838156030386241616967270051136862684282955991537338414961773579582932757141004204932054213610185226058428383136198936104632942497489498739897183325583340951152435956413801114255489130165449836905051326165370830554673259419604890586134665267687698856933901633921567579748923093505649829262337020641217111875006923069411778584596026715953822127592173142902673636449348881975583202914018304502788869342977433804925999933660151442708630639152564344393622683488924533630738934557423091516094843646237584273637443239810351573953018195234525958355653029554536372430979361344097937950355948103639632777321526741953229033254611279820660546487889155631849994795^2 = 6 $$



        $y = -163 $ works. The others should be checked for class number! No, $139$ has class number 3.



        $$
        1085997992037838057157328137528530814161327411705546203392088990536040293^2 - 4330747 cdot 521852316521211748718181001351655538497525757942306914225856323090563^2 = 6 $$



        $$ 50576439676678868925447962668907434500838480927375612223861414693409656592498369002412775393461481995344704306058443464631047373837930992505267663441324334534575755546957820383354011427592442618572553822492422632438018310472471467898207758462496052055942015486413777383860175293508915160725621756472206275639559775926508637417532793267711813496401310961017300099032326961359121416479939614082943062346592497129301169840684667781108633285175838272455967344224725866133380586503707411632734800342621002287656549985786259734994462255794013879381219457810712405084283774220828444140059155951479917295341262660858326466541291848167815166877848998169467570609203031564636509860322954392994510333265978746217370992701911980229349147987494073342207262560127339452333844537013716461592403989956476819621648310312838004247585673708244092703910695114947918019837457181216465905991224195278477515712580521442345725333566315384496982715121821384411921111090497302852848529853789432402185245489658332331342402733989663728321530595214247562396845918152405928944606618632203463997552998841227239534262770964180949700862983087031814190544748296635415256018314980663318640218710377201213304383260086867630769339280626456705440420391795961162063402561211243834067151983^2 - 4330747 cdot 24303389509168264155926836231677339583236279792966852959122818227864577731252374449598975246414912863111465364548050391636522567455569326936167362733978208903502309971646876492298053014761680209263210334367950807323938188804032444180691208424432641560933430829642849222471126855975046976264861142200196090873689848421843657191122679730405457613374464333528713595028025499158915631933516131901486678847790154871195366492722123901490942121147791994088903595812840508108723450617408520351474791501477137500457342580798802860226722483071140092607989410381522583658260015263828479974612715845634569484085007653986257235669726683443743485813491066481117864482736645186942197877484560957415923165525303520724765971741826705012467970971652276787231995434582749181129198639619283181022181454009410979226141089115582679800903885255370692759102173591511270474888363142061555783426807681868230735428982849314717966630981691678606125268941949114427742580036471039151646099484825259176902899828540485246941295441813001097452114340209278442506644192595084839750875848820948944425473440101086124918167955646103531186497403430181161785931987860726637908855991154397153654665336597089114095843532096882086827889787605551124993774754527399260647535995679182021376817^2 = 6 $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Mar 23 at 0:02

























        answered Mar 22 at 17:49









        Will JagyWill Jagy

        104k5102201




        104k5102201



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158262%2fproving-existence-of-integer-solution-in-x2y3z2-6%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye