How to prove Dilation property of Lebesgue integral The Next CEO of Stack OverflowIf $f$ is Lebesgue measurable, prove that there is a Borel measurable function $g$ such that $f=g$ except, possibly, on a Borel set of measure zero.Help with a Lebesgue integration problem.How to show $int_[0, +infty) frac21+x^2 dx$ Lebesgue integrable?How to prove an inequality of Lebesgue integral?Questions of an exercise in Lebesgue integralDilation of Real Valued Lebesgue IntegralProve that lebesgue integrable equal lebesgue measureIf $f in L^+$ and $int f<infty$ then there exists a null setUsing the Lebesgue dominated convergence theoremLebesgue-integrability of the Dirac delta function?
Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?
Can I cast Thunderwave and be at the center of its bottom face, but not be affected by it?
Why was Sir Cadogan fired?
Planeswalker Ability and Death Timing
Car headlights in a world without electricity
Compensation for working overtime on Saturdays
Is it okay to majorly distort historical facts while writing a fiction story?
How exploitable/balanced is this homebrew spell: Spell Permanency?
The sum of any ten consecutive numbers from a fibonacci sequence is divisible by 11
Direct Implications Between USA and UK in Event of No-Deal Brexit
What does this strange code stamp on my passport mean?
My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?
Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?
Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version
Compilation of a 2d array and a 1d array
How can I prove that a state of equilibrium is unstable?
Could a dragon use its wings to swim?
Is it reasonable to ask other researchers to send me their previous grant applications?
How to implement Comparable so it is consistent with identity-equality
Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?
Why did early computer designers eschew integers?
Read/write a pipe-delimited file line by line with some simple text manipulation
What is the difference between 'contrib' and 'non-free' packages repositories?
Could you use a laser beam as a modulated carrier wave for radio signal?
How to prove Dilation property of Lebesgue integral
The Next CEO of Stack OverflowIf $f$ is Lebesgue measurable, prove that there is a Borel measurable function $g$ such that $f=g$ except, possibly, on a Borel set of measure zero.Help with a Lebesgue integration problem.How to show $int_[0, +infty) frac21+x^2 dx$ Lebesgue integrable?How to prove an inequality of Lebesgue integral?Questions of an exercise in Lebesgue integralDilation of Real Valued Lebesgue IntegralProve that lebesgue integrable equal lebesgue measureIf $f in L^+$ and $int f<infty$ then there exists a null setUsing the Lebesgue dominated convergence theoremLebesgue-integrability of the Dirac delta function?
$begingroup$
Let $fin L^1(mathbbR^d), a_1,dots,a_d>0$, and $a=(a_1,dots,a_d)$. Define
$$g(x)=f(a_1^-1x_1,dots,a_d^-1x_d).$$
Show that $din L^1(mathbb R^d)$ and that $$int g=left(prod^d_j=1a_jright)int f.$$
$textbfMy Attempt:$ Since $f$ is integrable, it is also measurable, and hence there is an increasing sequence of simple functions $(varphi_n)_n$, such that $varphi_nto f$ a.e. This implies that $varphi_n(a^-1x)to f(a^-1x)$ a.e, where $a^-1xequiv (a_1^-1x_1,dots,a_d^-1x_d).$ This implies that $g$ is measurable since it is a limit of measurable functions.
Let $varphi(x)=sum_j=1^Nc_jcdot1_E_j(x)$ be a simple function, where the $E_j$ are measurable sets. Then we have by dilation invariance of the Lebesgue measure and linearity of the Lebesgue integral we get for $psi(x)=varphi(a^-1x)$
$$largeintpsi=sum^N_j=1c_km(a^-1E_j)=prod^d_j=1a_jsum^N_j=1c_k m(E_j).$$
For a non-negative integrable function, the monotone convergence theorem comes to the rescue, since we can approximate our function by an increasing sequence of simple functions, and then the result follows from the above.
Here is the work. Let $g$ be as at the start, but non-negative for simplicity. Then we have by the remark, using the Monotone convergence theorem that
$$largeint g=limlimits_ntoinftyintvarphi_n(a^-1x)=prod^d_j=1a_jlimlimits_ntoinftyintvarphi_n=prod^d_j=1a_jint f.$$
Is my work above correct? Any feedback is much welcomed.
Thank you for your time.
real-analysis proof-verification lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Let $fin L^1(mathbbR^d), a_1,dots,a_d>0$, and $a=(a_1,dots,a_d)$. Define
$$g(x)=f(a_1^-1x_1,dots,a_d^-1x_d).$$
Show that $din L^1(mathbb R^d)$ and that $$int g=left(prod^d_j=1a_jright)int f.$$
$textbfMy Attempt:$ Since $f$ is integrable, it is also measurable, and hence there is an increasing sequence of simple functions $(varphi_n)_n$, such that $varphi_nto f$ a.e. This implies that $varphi_n(a^-1x)to f(a^-1x)$ a.e, where $a^-1xequiv (a_1^-1x_1,dots,a_d^-1x_d).$ This implies that $g$ is measurable since it is a limit of measurable functions.
Let $varphi(x)=sum_j=1^Nc_jcdot1_E_j(x)$ be a simple function, where the $E_j$ are measurable sets. Then we have by dilation invariance of the Lebesgue measure and linearity of the Lebesgue integral we get for $psi(x)=varphi(a^-1x)$
$$largeintpsi=sum^N_j=1c_km(a^-1E_j)=prod^d_j=1a_jsum^N_j=1c_k m(E_j).$$
For a non-negative integrable function, the monotone convergence theorem comes to the rescue, since we can approximate our function by an increasing sequence of simple functions, and then the result follows from the above.
Here is the work. Let $g$ be as at the start, but non-negative for simplicity. Then we have by the remark, using the Monotone convergence theorem that
$$largeint g=limlimits_ntoinftyintvarphi_n(a^-1x)=prod^d_j=1a_jlimlimits_ntoinftyintvarphi_n=prod^d_j=1a_jint f.$$
Is my work above correct? Any feedback is much welcomed.
Thank you for your time.
real-analysis proof-verification lebesgue-integral lebesgue-measure
$endgroup$
1
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38
add a comment |
$begingroup$
Let $fin L^1(mathbbR^d), a_1,dots,a_d>0$, and $a=(a_1,dots,a_d)$. Define
$$g(x)=f(a_1^-1x_1,dots,a_d^-1x_d).$$
Show that $din L^1(mathbb R^d)$ and that $$int g=left(prod^d_j=1a_jright)int f.$$
$textbfMy Attempt:$ Since $f$ is integrable, it is also measurable, and hence there is an increasing sequence of simple functions $(varphi_n)_n$, such that $varphi_nto f$ a.e. This implies that $varphi_n(a^-1x)to f(a^-1x)$ a.e, where $a^-1xequiv (a_1^-1x_1,dots,a_d^-1x_d).$ This implies that $g$ is measurable since it is a limit of measurable functions.
Let $varphi(x)=sum_j=1^Nc_jcdot1_E_j(x)$ be a simple function, where the $E_j$ are measurable sets. Then we have by dilation invariance of the Lebesgue measure and linearity of the Lebesgue integral we get for $psi(x)=varphi(a^-1x)$
$$largeintpsi=sum^N_j=1c_km(a^-1E_j)=prod^d_j=1a_jsum^N_j=1c_k m(E_j).$$
For a non-negative integrable function, the monotone convergence theorem comes to the rescue, since we can approximate our function by an increasing sequence of simple functions, and then the result follows from the above.
Here is the work. Let $g$ be as at the start, but non-negative for simplicity. Then we have by the remark, using the Monotone convergence theorem that
$$largeint g=limlimits_ntoinftyintvarphi_n(a^-1x)=prod^d_j=1a_jlimlimits_ntoinftyintvarphi_n=prod^d_j=1a_jint f.$$
Is my work above correct? Any feedback is much welcomed.
Thank you for your time.
real-analysis proof-verification lebesgue-integral lebesgue-measure
$endgroup$
Let $fin L^1(mathbbR^d), a_1,dots,a_d>0$, and $a=(a_1,dots,a_d)$. Define
$$g(x)=f(a_1^-1x_1,dots,a_d^-1x_d).$$
Show that $din L^1(mathbb R^d)$ and that $$int g=left(prod^d_j=1a_jright)int f.$$
$textbfMy Attempt:$ Since $f$ is integrable, it is also measurable, and hence there is an increasing sequence of simple functions $(varphi_n)_n$, such that $varphi_nto f$ a.e. This implies that $varphi_n(a^-1x)to f(a^-1x)$ a.e, where $a^-1xequiv (a_1^-1x_1,dots,a_d^-1x_d).$ This implies that $g$ is measurable since it is a limit of measurable functions.
Let $varphi(x)=sum_j=1^Nc_jcdot1_E_j(x)$ be a simple function, where the $E_j$ are measurable sets. Then we have by dilation invariance of the Lebesgue measure and linearity of the Lebesgue integral we get for $psi(x)=varphi(a^-1x)$
$$largeintpsi=sum^N_j=1c_km(a^-1E_j)=prod^d_j=1a_jsum^N_j=1c_k m(E_j).$$
For a non-negative integrable function, the monotone convergence theorem comes to the rescue, since we can approximate our function by an increasing sequence of simple functions, and then the result follows from the above.
Here is the work. Let $g$ be as at the start, but non-negative for simplicity. Then we have by the remark, using the Monotone convergence theorem that
$$largeint g=limlimits_ntoinftyintvarphi_n(a^-1x)=prod^d_j=1a_jlimlimits_ntoinftyintvarphi_n=prod^d_j=1a_jint f.$$
Is my work above correct? Any feedback is much welcomed.
Thank you for your time.
real-analysis proof-verification lebesgue-integral lebesgue-measure
real-analysis proof-verification lebesgue-integral lebesgue-measure
edited Mar 20 at 9:36
Gaby Alfonso
asked Mar 16 at 20:31
Gaby AlfonsoGaby Alfonso
1,1901318
1,1901318
1
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38
add a comment |
1
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38
1
1
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150815%2fhow-to-prove-dilation-property-of-lebesgue-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150815%2fhow-to-prove-dilation-property-of-lebesgue-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$m([0,2]) = m(2[0, 1]) = 2m([0, 1]) = 2$, right? So something is shady in here. $int varphi_n(a^-1x)dx = sum c_jm(aE_j)$, $1_E(a^-1x) = 1_aE(x)$
$endgroup$
– Jakobian
Mar 16 at 20:53
$begingroup$
@Jakobian My bad, I worked out that $1_E(ax)=1_a^-1E(x)$ for $mathbbR$ and then we extend this to $mathbbR^d$ by using the product measure, since if $E=E_1timescdotstimes E_d$, then $m(a^-1E)=prod^d_j=1m(a_j^-1E_j)=prod^d_j=1a_j^-1m(E)$. Is that right?
$endgroup$
– Gaby Alfonso
Mar 16 at 21:50
$begingroup$
Yes, that's right
$endgroup$
– Jakobian
Mar 16 at 22:47
$begingroup$
This is not dilation invariance. It's the dilation property of the Lebesgue integral in this setting.
$endgroup$
– zhw.
Mar 17 at 15:25
$begingroup$
@zhw. My mistake, sorry. I corrected the error.
$endgroup$
– Gaby Alfonso
Mar 20 at 9:38