A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic. The Next CEO of Stack OverflowA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.showing that a continuous function attains each of its values(or each real number in general) exactly 3 times.Estimating the error of approximation for $sqrtx$ for $|x-1| leq 0.5$. No.4.5.3 PetrovicA difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding the proof of 7.2.3 Petrovic.A difficulty in understanding a step in a solution.A difficulty in understanding a statement in example 10.6.6 Petrovic.A difficulty in understanding theorem 10.6.7 in Petrovic.(n-dimensional intermediate value theorem)A difficulty in understanding the n-dimensional second order derivative.

Does Germany produce more waste than the US?

How to coordinate airplane tickets?

How seriously should I take size and weight limits of hand luggage?

Gauss' Posthumous Publications?

Direct Implications Between USA and UK in Event of No-Deal Brexit

Free fall ellipse or parabola?

How can I replace x-axis labels with pre-determined symbols?

Car headlights in a world without electricity

How does a dynamic QR code work?

Can a PhD from a non-TU9 German university become a professor in a TU9 university?

logical reads on global temp table, but not on session-level temp table

Avoiding the "not like other girls" trope?

Strange use of "whether ... than ..." in official text

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Why can't we say "I have been having a dog"?

Man transported from Alternate World into ours by a Neutrino Detector

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

What is the difference between 'contrib' and 'non-free' packages repositories?

Can Sri Krishna be called 'a person'?

Calculating discount not working

Why was Sir Cadogan fired?

How badly should I try to prevent a user from XSSing themselves?

Finitely generated matrix groups whose eigenvalues are all algebraic

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?



A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic.



The Next CEO of Stack OverflowA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.showing that a continuous function attains each of its values(or each real number in general) exactly 3 times.Estimating the error of approximation for $sqrtx$ for $|x-1| leq 0.5$. No.4.5.3 PetrovicA difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding the proof of 7.2.3 Petrovic.A difficulty in understanding a step in a solution.A difficulty in understanding a statement in example 10.6.6 Petrovic.A difficulty in understanding theorem 10.6.7 in Petrovic.(n-dimensional intermediate value theorem)A difficulty in understanding the n-dimensional second order derivative.










0












$begingroup$


The theorem and its proof is given below:



enter image description here



But I do not understand how the last equality come from the previous one, could anyone explain this for me please?










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    The theorem and its proof is given below:



    enter image description here



    But I do not understand how the last equality come from the previous one, could anyone explain this for me please?










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      The theorem and its proof is given below:



      enter image description here



      But I do not understand how the last equality come from the previous one, could anyone explain this for me please?










      share|cite|improve this question









      $endgroup$




      The theorem and its proof is given below:



      enter image description here



      But I do not understand how the last equality come from the previous one, could anyone explain this for me please?







      real-analysis calculus analysis multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 20 at 11:06









      hopefullyhopefully

      315215




      315215




















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          You have
          $$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$



          So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            I'll revrite @trancelocation's answer in a more pedagogical way:
            beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
            f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
            (f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
            |f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
            endalign*

            and lastly Cauchy Schwartz implies
            $$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$






            share|cite|improve this answer









            $endgroup$




















              1












              $begingroup$

              You just have to pass one term to the LHS.



              $$
              f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
              $$

              $$
              f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
              $$

              $$
              (f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
              $$

              $$
              |f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
              $$



              $$
              |f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
              $$



              $$
              |f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
              $$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155285%2fa-difficulty-in-understanding-a-step-in-the-proof-of-thm-11-5-6-in-petrovic%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                You have
                $$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$



                So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  You have
                  $$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$



                  So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    You have
                    $$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$



                    So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.






                    share|cite|improve this answer









                    $endgroup$



                    You have
                    $$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$



                    So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 20 at 11:11









                    trancelocationtrancelocation

                    13.4k1827




                    13.4k1827





















                        2












                        $begingroup$

                        I'll revrite @trancelocation's answer in a more pedagogical way:
                        beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
                        f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
                        (f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
                        |f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
                        endalign*

                        and lastly Cauchy Schwartz implies
                        $$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          I'll revrite @trancelocation's answer in a more pedagogical way:
                          beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
                          f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
                          (f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
                          |f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
                          endalign*

                          and lastly Cauchy Schwartz implies
                          $$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            I'll revrite @trancelocation's answer in a more pedagogical way:
                            beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
                            f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
                            (f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
                            |f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
                            endalign*

                            and lastly Cauchy Schwartz implies
                            $$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$






                            share|cite|improve this answer









                            $endgroup$



                            I'll revrite @trancelocation's answer in a more pedagogical way:
                            beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
                            f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
                            (f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
                            |f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
                            endalign*

                            and lastly Cauchy Schwartz implies
                            $$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 20 at 11:17









                            b00n heTb00n heT

                            10.5k12335




                            10.5k12335





















                                1












                                $begingroup$

                                You just have to pass one term to the LHS.



                                $$
                                f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
                                $$

                                $$
                                f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                $$

                                $$
                                (f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                $$

                                $$
                                |f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
                                $$



                                $$
                                |f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
                                $$



                                $$
                                |f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
                                $$






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$

                                  You just have to pass one term to the LHS.



                                  $$
                                  f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
                                  $$

                                  $$
                                  f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                  $$

                                  $$
                                  (f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                  $$

                                  $$
                                  |f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
                                  $$



                                  $$
                                  |f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
                                  $$



                                  $$
                                  |f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    You just have to pass one term to the LHS.



                                    $$
                                    f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
                                    $$

                                    $$
                                    f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                    $$

                                    $$
                                    (f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                    $$

                                    $$
                                    |f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
                                    $$



                                    $$
                                    |f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
                                    $$



                                    $$
                                    |f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    You just have to pass one term to the LHS.



                                    $$
                                    f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
                                    $$

                                    $$
                                    f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                    $$

                                    $$
                                    (f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
                                    $$

                                    $$
                                    |f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
                                    $$



                                    $$
                                    |f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
                                    $$



                                    $$
                                    |f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 20 at 11:18









                                    PierreCarrePierreCarre

                                    1,665212




                                    1,665212



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155285%2fa-difficulty-in-understanding-a-step-in-the-proof-of-thm-11-5-6-in-petrovic%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Moe incest case Sentencing See also References Navigation menu"'Australian Josef Fritzl' fathered four children by daughter""Small town recoils in horror at 'Australian Fritzl' incest case""Victorian rape allegations echo Fritzl case - Just In (Australian Broadcasting Corporation)""Incest father jailed for 22 years""'Australian Fritzl' sentenced to 22 years in prison for abusing daughter for three decades""RSJ v The Queen"

                                        John Burke, 9th Earl of Clanricarde References Navigation menuA General and heraldic dictionary of the peerage and baronetage of the British EmpireLeigh Rayment's Peerage Pages

                                        Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".