A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic. The Next CEO of Stack OverflowA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.showing that a continuous function attains each of its values(or each real number in general) exactly 3 times.Estimating the error of approximation for $sqrtx$ for $|x-1| leq 0.5$. No.4.5.3 PetrovicA difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding the proof of 7.2.3 Petrovic.A difficulty in understanding a step in a solution.A difficulty in understanding a statement in example 10.6.6 Petrovic.A difficulty in understanding theorem 10.6.7 in Petrovic.(n-dimensional intermediate value theorem)A difficulty in understanding the n-dimensional second order derivative.
Does Germany produce more waste than the US?
How to coordinate airplane tickets?
How seriously should I take size and weight limits of hand luggage?
Gauss' Posthumous Publications?
Direct Implications Between USA and UK in Event of No-Deal Brexit
Free fall ellipse or parabola?
How can I replace x-axis labels with pre-determined symbols?
Car headlights in a world without electricity
How does a dynamic QR code work?
Can a PhD from a non-TU9 German university become a professor in a TU9 university?
logical reads on global temp table, but not on session-level temp table
Avoiding the "not like other girls" trope?
Strange use of "whether ... than ..." in official text
MT "will strike" & LXX "will watch carefully" (Gen 3:15)?
Why can't we say "I have been having a dog"?
Man transported from Alternate World into ours by a Neutrino Detector
Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?
What is the difference between 'contrib' and 'non-free' packages repositories?
Can Sri Krishna be called 'a person'?
Calculating discount not working
Why was Sir Cadogan fired?
How badly should I try to prevent a user from XSSing themselves?
Finitely generated matrix groups whose eigenvalues are all algebraic
Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?
A difficulty in understanding a step in the proof of Thm. 11.5.6 in Petrovic.
The Next CEO of Stack OverflowA difficulty in understanding the proof of completeness of $l_2$.A difficulty in understanding theorem 4.2 in Israel Gohberg.showing that a continuous function attains each of its values(or each real number in general) exactly 3 times.Estimating the error of approximation for $sqrtx$ for $|x-1| leq 0.5$. No.4.5.3 PetrovicA difficulty in understanding a proof for L'Hospital's rule (in Petrovic)A difficulty in understanding the proof of 7.2.3 Petrovic.A difficulty in understanding a step in a solution.A difficulty in understanding a statement in example 10.6.6 Petrovic.A difficulty in understanding theorem 10.6.7 in Petrovic.(n-dimensional intermediate value theorem)A difficulty in understanding the n-dimensional second order derivative.
$begingroup$
The theorem and its proof is given below:
But I do not understand how the last equality come from the previous one, could anyone explain this for me please?
real-analysis calculus analysis multivariable-calculus
$endgroup$
add a comment |
$begingroup$
The theorem and its proof is given below:
But I do not understand how the last equality come from the previous one, could anyone explain this for me please?
real-analysis calculus analysis multivariable-calculus
$endgroup$
add a comment |
$begingroup$
The theorem and its proof is given below:
But I do not understand how the last equality come from the previous one, could anyone explain this for me please?
real-analysis calculus analysis multivariable-calculus
$endgroup$
The theorem and its proof is given below:
But I do not understand how the last equality come from the previous one, could anyone explain this for me please?
real-analysis calculus analysis multivariable-calculus
real-analysis calculus analysis multivariable-calculus
asked Mar 20 at 11:06
hopefullyhopefully
315215
315215
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You have
$$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$
So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.
$endgroup$
add a comment |
$begingroup$
I'll revrite @trancelocation's answer in a more pedagogical way:
beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
(f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
|f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
endalign*
and lastly Cauchy Schwartz implies
$$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$
$endgroup$
add a comment |
$begingroup$
You just have to pass one term to the LHS.
$$
f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
$$
$$
f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
(f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
|f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
$$
$$
|f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
$$
$$
|f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155285%2fa-difficulty-in-understanding-a-step-in-the-proof-of-thm-11-5-6-in-petrovic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$
So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.
$endgroup$
add a comment |
$begingroup$
You have
$$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$
So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.
$endgroup$
add a comment |
$begingroup$
You have
$$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$
So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.
$endgroup$
You have
$$f(x) cdot (f(x) - f(a)) - f(a)cdot (f(x) - f(a)) = (f(x) - f(a)) cdot (f(x) - f(a)) = ||f(x) - f(a)||^2$$
So, the author brings the term $f(a)cdot (f(x) - f(a))$ from the RHS to the LHS and then just writes the scalar product of $(f(x) - f(a))$ with itself as its squared Euclidian norm.
answered Mar 20 at 11:11
trancelocationtrancelocation
13.4k1827
13.4k1827
add a comment |
add a comment |
$begingroup$
I'll revrite @trancelocation's answer in a more pedagogical way:
beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
(f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
|f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
endalign*
and lastly Cauchy Schwartz implies
$$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$
$endgroup$
add a comment |
$begingroup$
I'll revrite @trancelocation's answer in a more pedagogical way:
beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
(f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
|f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
endalign*
and lastly Cauchy Schwartz implies
$$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$
$endgroup$
add a comment |
$begingroup$
I'll revrite @trancelocation's answer in a more pedagogical way:
beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
(f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
|f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
endalign*
and lastly Cauchy Schwartz implies
$$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$
$endgroup$
I'll revrite @trancelocation's answer in a more pedagogical way:
beginalign*f(x) cdot (f(x) - f(a)) &= colorredf(a)cdot (f(x) - f(a)) + (f(x) - f(a)) cdot Df(b)(x-a)\
f(x) cdot underline(f(x) - f(a))-colorredf(a)cdot underline(f(x) - f(a))&=(f(x) - f(a)) cdot Df(b)(x-a)\
(f(x)-f(a)) cdot underline(f(x) - f(a)) & =(f(x) - f(a)) cdot Df(b)(x-a)\
|f(x)-f(a)|^2&=(f(x) - f(a)) cdot Df(b)(x-a)
endalign*
and lastly Cauchy Schwartz implies
$$|f(x)-f(a)|^2leq |(f(x) - f(a))| cdot |Df(b)(x-a)|$$
answered Mar 20 at 11:17
b00n heTb00n heT
10.5k12335
10.5k12335
add a comment |
add a comment |
$begingroup$
You just have to pass one term to the LHS.
$$
f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
$$
$$
f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
(f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
|f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
$$
$$
|f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
$$
$$
|f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
$$
$endgroup$
add a comment |
$begingroup$
You just have to pass one term to the LHS.
$$
f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
$$
$$
f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
(f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
|f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
$$
$$
|f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
$$
$$
|f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
$$
$endgroup$
add a comment |
$begingroup$
You just have to pass one term to the LHS.
$$
f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
$$
$$
f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
(f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
|f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
$$
$$
|f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
$$
$$
|f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
$$
$endgroup$
You just have to pass one term to the LHS.
$$
f(x)cdot (f(x)-f(a))= f(a)cdot(f(x)-f(a))+(f(x)-f(a))Df(b)(x-a) Leftrightarrow
$$
$$
f(x)cdot (f(x)-f(a))-f(a)cdot(f(x)-f(a))=(f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
(f(x)-f(a))cdot (f(x)-f(a)) = (f(x)-f(a))Df(b)(x-a)Leftrightarrow
$$
$$
|f(x)-f(a)|^2 = (f(x)-f(a))Df(b)(x-a) Rightarrow
$$
$$
|f(x)-f(a)|^2 = |(f(x)-f(a))Df(b)(x-a)| Rightarrow
$$
$$
|f(x)-f(a)|^2 leq |f(x)-f(a)| |Df(b)(x-a)|
$$
answered Mar 20 at 11:18
PierreCarrePierreCarre
1,665212
1,665212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155285%2fa-difficulty-in-understanding-a-step-in-the-proof-of-thm-11-5-6-in-petrovic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown