An integral for which I don't trust WolframAlpha The Next CEO of Stack OverflowIntegral $int_0^4 int_sqrty^2 y^2 e^x^7 operatorname d!x operatorname d!y,$Holomorphic Functions and Cauchy TheoremShould it be obvious that this integral is zero?How to integrate the following? $int_0^+inftyfrac1-cos xx^alpha+1,dx$Complex integral with Residues TheoremEvaluation of integral related to Gamma functionGive a recursive formula for calculating the value of $ int_0^pi sin^n x , mathrm dx$Convergence of This integral?Function defined by Cauchy IntegralNeed verification for this integral
Unreliable Magic - Is it worth it?
Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?
Can the Reverse Gravity spell affect the Meteor Swarm spell?
How to be diplomatic in refusing to write code that breaches the privacy of our users
How do I construct this japanese bowl?
Return the Closest Prime Number
Can I equip Skullclamp on a creature I am sacrificing?
% symbol leads to superlong (forever?) compilations
Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables
What is the difference between "behavior" and "behaviour"?
Robert Sheckley short story about vacation spots being overwhelmed
How do we know the LHC results are robust?
How to get regions to plot as graphics
Is HostGator storing my password in plaintext?
Increase performance creating Mandelbrot set in python
If I blow insulation everywhere in my attic except the door trap, will heat escape through it?
Grabbing quick drinks
What makes a siege story/plot interesting?
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
How long to clear the 'suck zone' of a turbofan after start is initiated?
How do I go from 300 unfinished/half written blog posts, to published posts?
Anatomically Correct Mesopelagic Aves
Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?
Why does C# sound extremely flat when saxophone is tuned to G?
An integral for which I don't trust WolframAlpha
The Next CEO of Stack OverflowIntegral $int_0^4 int_sqrty^2 y^2 e^x^7 operatorname d!x operatorname d!y,$Holomorphic Functions and Cauchy TheoremShould it be obvious that this integral is zero?How to integrate the following? $int_0^+inftyfrac1-cos xx^alpha+1,dx$Complex integral with Residues TheoremEvaluation of integral related to Gamma functionGive a recursive formula for calculating the value of $ int_0^pi sin^n x , mathrm dx$Convergence of This integral?Function defined by Cauchy IntegralNeed verification for this integral
$begingroup$
WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?
integration complex-analysis proof-verification
$endgroup$
|
show 6 more comments
$begingroup$
WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?
integration complex-analysis proof-verification
$endgroup$
3
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
2
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
3
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
1
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
1
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11
|
show 6 more comments
$begingroup$
WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?
integration complex-analysis proof-verification
$endgroup$
WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?
integration complex-analysis proof-verification
integration complex-analysis proof-verification
asked Jun 26 '17 at 3:01
user457218user457218
17525
17525
3
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
2
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
3
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
1
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
1
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11
|
show 6 more comments
3
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
2
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
3
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
1
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
1
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11
3
3
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
2
2
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
3
3
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
1
1
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
1
1
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Just as User8128 commented, I believe that you are perfectly correct.
Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$ Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.
What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.
There is obviously a bug that I suggest you to report.
$endgroup$
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
$endgroup$
– user22961
Jun 26 '17 at 18:27
|
show 6 more comments
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign
- $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
$dsy_m > 1$ when $dsR > root3 over 3$.
- It vanishes at $dsy = 0$ and at $dsy = root6R$.
- It $dsto -infty$ when $dsy to infty$.
- It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.
Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign
beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2336344%2fan-integral-for-which-i-dont-trust-wolframalpha%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Just as User8128 commented, I believe that you are perfectly correct.
Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$ Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.
What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.
There is obviously a bug that I suggest you to report.
$endgroup$
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
$endgroup$
– user22961
Jun 26 '17 at 18:27
|
show 6 more comments
$begingroup$
Just as User8128 commented, I believe that you are perfectly correct.
Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$ Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.
What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.
There is obviously a bug that I suggest you to report.
$endgroup$
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
$endgroup$
– user22961
Jun 26 '17 at 18:27
|
show 6 more comments
$begingroup$
Just as User8128 commented, I believe that you are perfectly correct.
Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$ Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.
What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.
There is obviously a bug that I suggest you to report.
$endgroup$
Just as User8128 commented, I believe that you are perfectly correct.
Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$ Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.
What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.
There is obviously a bug that I suggest you to report.
edited Mar 18 at 10:57
YuiTo Cheng
2,1512937
2,1512937
answered Jun 26 '17 at 3:37
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
$endgroup$
– user22961
Jun 26 '17 at 18:27
|
show 6 more comments
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
$endgroup$
– user22961
Jun 26 '17 at 18:27
3
3
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
$begingroup$
The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
$endgroup$
– Jannick
Jun 26 '17 at 9:36
10
10
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
@Jannick. Type $1.0i$ and it works !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:09
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
$begingroup$
Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
$endgroup$
– Jannick
Jun 26 '17 at 10:13
3
3
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
$begingroup$
@Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:15
1
1
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.
Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.$endgroup$
– user22961
Jun 26 '17 at 18:27
$begingroup$
@MeniRosenfeld: The original bug does, at the least in Mathematica 9.
Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity]
yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.$endgroup$
– user22961
Jun 26 '17 at 18:27
|
show 6 more comments
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign
- $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
$dsy_m > 1$ when $dsR > root3 over 3$.
- It vanishes at $dsy = 0$ and at $dsy = root6R$.
- It $dsto -infty$ when $dsy to infty$.
- It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.
Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign
beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign
$endgroup$
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign
- $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
$dsy_m > 1$ when $dsR > root3 over 3$.
- It vanishes at $dsy = 0$ and at $dsy = root6R$.
- It $dsto -infty$ when $dsy to infty$.
- It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.
Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign
beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign
$endgroup$
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign
- $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
$dsy_m > 1$ when $dsR > root3 over 3$.
- It vanishes at $dsy = 0$ and at $dsy = root6R$.
- It $dsto -infty$ when $dsy to infty$.
- It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.
Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign
beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign
$endgroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign
- $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
$dsy_m > 1$ when $dsR > root3 over 3$.
- It vanishes at $dsy = 0$ and at $dsy = root6R$.
- It $dsto -infty$ when $dsy to infty$.
- It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.
Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign
beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign
edited Jun 26 '17 at 6:33
answered Jun 26 '17 at 6:27
Felix MarinFelix Marin
68.8k7109146
68.8k7109146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2336344%2fan-integral-for-which-i-dont-trust-wolframalpha%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23
2
$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06
3
$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04
1
$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07
1
$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11