An integral for which I don't trust WolframAlpha The Next CEO of Stack OverflowIntegral $int_0^4 int_sqrty^2 y^2 e^x^7 operatorname d!x operatorname d!y,$Holomorphic Functions and Cauchy TheoremShould it be obvious that this integral is zero?How to integrate the following? $int_0^+inftyfrac1-cos xx^alpha+1,dx$Complex integral with Residues TheoremEvaluation of integral related to Gamma functionGive a recursive formula for calculating the value of $ int_0^pi sin^n x , mathrm dx$Convergence of This integral?Function defined by Cauchy IntegralNeed verification for this integral

Unreliable Magic - Is it worth it?

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?

Can the Reverse Gravity spell affect the Meteor Swarm spell?

How to be diplomatic in refusing to write code that breaches the privacy of our users

How do I construct this japanese bowl?

Return the Closest Prime Number

Can I equip Skullclamp on a creature I am sacrificing?

% symbol leads to superlong (forever?) compilations

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

What is the difference between "behavior" and "behaviour"?

Robert Sheckley short story about vacation spots being overwhelmed

How do we know the LHC results are robust?

How to get regions to plot as graphics

Is HostGator storing my password in plaintext?

Increase performance creating Mandelbrot set in python

If I blow insulation everywhere in my attic except the door trap, will heat escape through it?

Grabbing quick drinks

What makes a siege story/plot interesting?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

How long to clear the 'suck zone' of a turbofan after start is initiated?

How do I go from 300 unfinished/half written blog posts, to published posts?

Anatomically Correct Mesopelagic Aves

Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?

Why does C# sound extremely flat when saxophone is tuned to G?



An integral for which I don't trust WolframAlpha



The Next CEO of Stack OverflowIntegral $int_0^4 int_sqrty^2 y^2 e^x^7 operatorname d!x operatorname d!y,$Holomorphic Functions and Cauchy TheoremShould it be obvious that this integral is zero?How to integrate the following? $int_0^+inftyfrac1-cos xx^alpha+1,dx$Complex integral with Residues TheoremEvaluation of integral related to Gamma functionGive a recursive formula for calculating the value of $ int_0^pi sin^n x , mathrm dx$Convergence of This integral?Function defined by Cauchy IntegralNeed verification for this integral










31












$begingroup$


WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    The integrals are equal provided that $i$ is a real number, but it isn't.
    $endgroup$
    – WW1
    Jun 26 '17 at 3:23






  • 2




    $begingroup$
    @WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
    $endgroup$
    – user457218
    Jun 26 '17 at 4:06







  • 3




    $begingroup$
    @WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
    $endgroup$
    – Hurkyl
    Jun 26 '17 at 10:04







  • 1




    $begingroup$
    For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:07







  • 1




    $begingroup$
    They seem to have already corrected this.
    $endgroup$
    – sophros
    Jun 26 '17 at 17:11















31












$begingroup$


WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    The integrals are equal provided that $i$ is a real number, but it isn't.
    $endgroup$
    – WW1
    Jun 26 '17 at 3:23






  • 2




    $begingroup$
    @WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
    $endgroup$
    – user457218
    Jun 26 '17 at 4:06







  • 3




    $begingroup$
    @WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
    $endgroup$
    – Hurkyl
    Jun 26 '17 at 10:04







  • 1




    $begingroup$
    For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:07







  • 1




    $begingroup$
    They seem to have already corrected this.
    $endgroup$
    – sophros
    Jun 26 '17 at 17:11













31












31








31


6



$begingroup$


WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?










share|cite|improve this question









$endgroup$




WolframAlpha tells me that $$int_-infty^infty e^-(t-i)^4 , mathrmdt = 0.$$ I am suspicious of this, because of the idea that for nice enough $f$, since $$int_-infty^infty f(t-a) , mathrmdt$$ is holomorphic in $a$ and takes the same value for all $a in mathbbR$, it should be independent of $a$ by the identity principle; and then $$int_-infty^infty e^-(t-i)^4 , mathrmdt = int_-infty^infty e^-t^4 , mathrmdt = 2 cdot Gamma(5/4).$$ But WolframAlpha even tells me numerically that $int_-infty^infty e^-(t-i)^4 , mathrmdt$ is close to $0$. Am I doing something wrong?







integration complex-analysis proof-verification






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jun 26 '17 at 3:01









user457218user457218

17525




17525







  • 3




    $begingroup$
    The integrals are equal provided that $i$ is a real number, but it isn't.
    $endgroup$
    – WW1
    Jun 26 '17 at 3:23






  • 2




    $begingroup$
    @WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
    $endgroup$
    – user457218
    Jun 26 '17 at 4:06







  • 3




    $begingroup$
    @WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
    $endgroup$
    – Hurkyl
    Jun 26 '17 at 10:04







  • 1




    $begingroup$
    For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:07







  • 1




    $begingroup$
    They seem to have already corrected this.
    $endgroup$
    – sophros
    Jun 26 '17 at 17:11












  • 3




    $begingroup$
    The integrals are equal provided that $i$ is a real number, but it isn't.
    $endgroup$
    – WW1
    Jun 26 '17 at 3:23






  • 2




    $begingroup$
    @WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
    $endgroup$
    – user457218
    Jun 26 '17 at 4:06







  • 3




    $begingroup$
    @WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
    $endgroup$
    – Hurkyl
    Jun 26 '17 at 10:04







  • 1




    $begingroup$
    For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:07







  • 1




    $begingroup$
    They seem to have already corrected this.
    $endgroup$
    – sophros
    Jun 26 '17 at 17:11







3




3




$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23




$begingroup$
The integrals are equal provided that $i$ is a real number, but it isn't.
$endgroup$
– WW1
Jun 26 '17 at 3:23




2




2




$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06





$begingroup$
@WW1 That shouldn't matter by the identity principle, or as User8128 suggests (essentially) the contour of integration can be shifted in the $y$ direction without changing the integral, since it only matters that it connects $mathrmRe[z] = -infty$ and $mathrmRe[z] = infty.$ I am pretty confident in either argument but I thought I would ask here just to double check. (I usually trust wolframalpha blindly so it is irritating when something strange like this turns up)
$endgroup$
– user457218
Jun 26 '17 at 4:06





3




3




$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04





$begingroup$
@WW1: The argument for $a=i$ isn't about making a change of variable: it's about analytic continuation.
$endgroup$
– Hurkyl
Jun 26 '17 at 10:04





1




1




$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07





$begingroup$
For the fun type $int_-infty^infty e^-(t-colorred1.0i)^4 ,dt $ and you will get the value !!!
$endgroup$
– Claude Leibovici
Jun 26 '17 at 10:07





1




1




$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11




$begingroup$
They seem to have already corrected this.
$endgroup$
– sophros
Jun 26 '17 at 17:11










2 Answers
2






active

oldest

votes


















27












$begingroup$

Just as User8128 commented, I believe that you are perfectly correct.



Without changing variable and using another CAS
$$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
$$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$
Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.



What is interesting is that, if you ask Wolfram Alpha
$$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
$$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.



There is obviously a bug that I suggest you to report.






share|cite|improve this answer











$endgroup$








  • 3




    $begingroup$
    The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
    $endgroup$
    – Jannick
    Jun 26 '17 at 9:36







  • 10




    $begingroup$
    @Jannick. Type $1.0i$ and it works !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:09










  • $begingroup$
    Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
    $endgroup$
    – Jannick
    Jun 26 '17 at 10:13






  • 3




    $begingroup$
    @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:15







  • 1




    $begingroup$
    @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
    $endgroup$
    – user22961
    Jun 26 '17 at 18:27



















14












$begingroup$

$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
int_-infty^inftyexpo-parst - ic^4dd t & =
int_0^inftybracksexpo-parst - ic^4 +
expo-pars-t - ic^4dd t =
2,Reint_0^inftyexpo-parst + ic^4dd t =
2,Reint_ic^infty + icexpo-t^4dd t
\[5mm] & =
-2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
2,Reint_infty^0expo-t^4dd t -
2,Reint_0^1expo-parsic y^4ic,dd y
\[5mm] & =
-2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
1 over 2int_0^inftyt^-3/4expo-t,dd t
\[5mm] & =
-2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
1 over 2,Gammapars1 over 4
\[1cm] & =
1 over 2,Gammapars1 over 4
\[2mm] & -
2lim_R to inftybraces%
expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y
endalign




  • $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
    $dsy_m > 1$ when $dsR > root3 over 3$.

  • It vanishes at $dsy = 0$ and at $dsy = root6R$.

  • It $dsto -infty$ when $dsy to infty$.

  • It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.



Then,
beginalign
0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
\[5mm] & <
expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
exppars-R^4 + 6R^2 - 1
,,,stackrelmrmas R to inftyto,,,
color#f00large 0
endalign



beginalign
mboxsuch thatquad
bbxint_-infty^inftyexpo-parst - ic^4dd t =
1 over 2,Gammapars1 over 4 approx 1.8128
endalign




share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2336344%2fan-integral-for-which-i-dont-trust-wolframalpha%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    27












    $begingroup$

    Just as User8128 commented, I believe that you are perfectly correct.



    Without changing variable and using another CAS
    $$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
    $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
    Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$
    Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.



    What is interesting is that, if you ask Wolfram Alpha
    $$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
    $$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.



    There is obviously a bug that I suggest you to report.






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
      $endgroup$
      – Jannick
      Jun 26 '17 at 9:36







    • 10




      $begingroup$
      @Jannick. Type $1.0i$ and it works !!!
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:09










    • $begingroup$
      Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
      $endgroup$
      – Jannick
      Jun 26 '17 at 10:13






    • 3




      $begingroup$
      @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:15







    • 1




      $begingroup$
      @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
      $endgroup$
      – user22961
      Jun 26 '17 at 18:27
















    27












    $begingroup$

    Just as User8128 commented, I believe that you are perfectly correct.



    Without changing variable and using another CAS
    $$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
    $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
    Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$
    Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.



    What is interesting is that, if you ask Wolfram Alpha
    $$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
    $$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.



    There is obviously a bug that I suggest you to report.






    share|cite|improve this answer











    $endgroup$








    • 3




      $begingroup$
      The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
      $endgroup$
      – Jannick
      Jun 26 '17 at 9:36







    • 10




      $begingroup$
      @Jannick. Type $1.0i$ and it works !!!
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:09










    • $begingroup$
      Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
      $endgroup$
      – Jannick
      Jun 26 '17 at 10:13






    • 3




      $begingroup$
      @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:15







    • 1




      $begingroup$
      @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
      $endgroup$
      – user22961
      Jun 26 '17 at 18:27














    27












    27








    27





    $begingroup$

    Just as User8128 commented, I believe that you are perfectly correct.



    Without changing variable and using another CAS
    $$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
    $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
    Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$
    Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.



    What is interesting is that, if you ask Wolfram Alpha
    $$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
    $$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.



    There is obviously a bug that I suggest you to report.






    share|cite|improve this answer











    $endgroup$



    Just as User8128 commented, I believe that you are perfectly correct.



    Without changing variable and using another CAS
    $$int mathrme^-(t-i)^4 , mathrmdt=colorred-frac(t-i), Gamma left(frac14,(t-i)^4right)4 sqrt[4](t-i)^4=-frac14 (t-i) E_frac34left((t-i)^4right)$$
    $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=i left(E_frac34(-4)-Releft(E_frac34(-4)right)right)$$ $$int_-infty^infty mathrme^-(t-i)^4 , mathrmdt=frac(-1)^1/4, Gamma left(frac14,-4right)sqrt2-i
    Releft(-frac(-1)^3/4, Gamma left(frac14,-4right)sqrt2right)=2, Gamma left(frac54right) $$
    Notice that, for the indefinite integral, Wolfram Alpha correctly reports the expression written in red.



    What is interesting is that, if you ask Wolfram Alpha
    $$int_0^infty mathrme^-(t-i)^4 , mathrmdt=-frac i4E_frac34(-1)$$
    $$int^0_-infty mathrme^-(t-i)^4 , mathrmdt=+frac i4E_frac34(-1)$$ leading to the $0$ you obtained.



    There is obviously a bug that I suggest you to report.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Mar 18 at 10:57









    YuiTo Cheng

    2,1512937




    2,1512937










    answered Jun 26 '17 at 3:37









    Claude LeiboviciClaude Leibovici

    125k1158135




    125k1158135







    • 3




      $begingroup$
      The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
      $endgroup$
      – Jannick
      Jun 26 '17 at 9:36







    • 10




      $begingroup$
      @Jannick. Type $1.0i$ and it works !!!
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:09










    • $begingroup$
      Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
      $endgroup$
      – Jannick
      Jun 26 '17 at 10:13






    • 3




      $begingroup$
      @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:15







    • 1




      $begingroup$
      @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
      $endgroup$
      – user22961
      Jun 26 '17 at 18:27













    • 3




      $begingroup$
      The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
      $endgroup$
      – Jannick
      Jun 26 '17 at 9:36







    • 10




      $begingroup$
      @Jannick. Type $1.0i$ and it works !!!
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:09










    • $begingroup$
      Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
      $endgroup$
      – Jannick
      Jun 26 '17 at 10:13






    • 3




      $begingroup$
      @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
      $endgroup$
      – Claude Leibovici
      Jun 26 '17 at 10:15







    • 1




      $begingroup$
      @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
      $endgroup$
      – user22961
      Jun 26 '17 at 18:27








    3




    3




    $begingroup$
    The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
    $endgroup$
    – Jannick
    Jun 26 '17 at 9:36





    $begingroup$
    The bug is kind of interesting. Just below i it still works, e.g. for 0.99 i see here at 1 i it fails.
    $endgroup$
    – Jannick
    Jun 26 '17 at 9:36





    10




    10




    $begingroup$
    @Jannick. Type $1.0i$ and it works !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:09




    $begingroup$
    @Jannick. Type $1.0i$ and it works !!!
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:09












    $begingroup$
    Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
    $endgroup$
    – Jannick
    Jun 26 '17 at 10:13




    $begingroup$
    Yes true, that is really funny. For integer one it already fails but for float one it still works. For 1.01 it fails however.
    $endgroup$
    – Jannick
    Jun 26 '17 at 10:13




    3




    3




    $begingroup$
    @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:15





    $begingroup$
    @Jannick.**Funny** may not be the most appropriate term here ! Cheers and thanks for your previous comment which made me trying $1.0i$.
    $endgroup$
    – Claude Leibovici
    Jun 26 '17 at 10:15





    1




    1




    $begingroup$
    @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
    $endgroup$
    – user22961
    Jun 26 '17 at 18:27





    $begingroup$
    @MeniRosenfeld: The original bug does, at the least in Mathematica 9. Integrate[Exp[-(t - I)^4], t, -Infinity, Infinity] yields 0. NIntegrate with the same argument returns 1.8128 + very little i, just like what you see.
    $endgroup$
    – user22961
    Jun 26 '17 at 18:27












    14












    $begingroup$

    $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
    newcommandbraces[1]leftlbrace,#1,rightrbrace
    newcommandbracks[1]leftlbrack,#1,rightrbrack
    newcommandddmathrmd
    newcommandds[1]displaystyle#1
    newcommandexpo[1],mathrme^#1,
    newcommandicmathrmi
    newcommandmc[1]mathcal#1
    newcommandmrm[1]mathrm#1
    newcommandpars[1]left(,#1,right)
    newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
    newcommandroot[2][],sqrt[#1],#2,,
    newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
    newcommandverts[1]leftvert,#1,rightvert$
    beginalign
    int_-infty^inftyexpo-parst - ic^4dd t & =
    int_0^inftybracksexpo-parst - ic^4 +
    expo-pars-t - ic^4dd t =
    2,Reint_0^inftyexpo-parst + ic^4dd t =
    2,Reint_ic^infty + icexpo-t^4dd t
    \[5mm] & =
    -2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
    2,Reint_infty^0expo-t^4dd t -
    2,Reint_0^1expo-parsic y^4ic,dd y
    \[5mm] & =
    -2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
    1 over 2int_0^inftyt^-3/4expo-t,dd t
    \[5mm] & =
    -2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
    1 over 2,Gammapars1 over 4
    \[1cm] & =
    1 over 2,Gammapars1 over 4
    \[2mm] & -
    2lim_R to inftybraces%
    expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
    sinpars4Rybracksy^2 - R^2,dd y
    endalign




    • $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
      $dsy_m > 1$ when $dsR > root3 over 3$.

    • It vanishes at $dsy = 0$ and at $dsy = root6R$.

    • It $dsto -infty$ when $dsy to infty$.

    • It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.



    Then,
    beginalign
    0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
    sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
    \[5mm] & <
    expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
    exppars-R^4 + 6R^2 - 1
    ,,,stackrelmrmas R to inftyto,,,
    color#f00large 0
    endalign



    beginalign
    mboxsuch thatquad
    bbxint_-infty^inftyexpo-parst - ic^4dd t =
    1 over 2,Gammapars1 over 4 approx 1.8128
    endalign




    share|cite|improve this answer











    $endgroup$

















      14












      $begingroup$

      $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
      newcommandbraces[1]leftlbrace,#1,rightrbrace
      newcommandbracks[1]leftlbrack,#1,rightrbrack
      newcommandddmathrmd
      newcommandds[1]displaystyle#1
      newcommandexpo[1],mathrme^#1,
      newcommandicmathrmi
      newcommandmc[1]mathcal#1
      newcommandmrm[1]mathrm#1
      newcommandpars[1]left(,#1,right)
      newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
      newcommandroot[2][],sqrt[#1],#2,,
      newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
      newcommandverts[1]leftvert,#1,rightvert$
      beginalign
      int_-infty^inftyexpo-parst - ic^4dd t & =
      int_0^inftybracksexpo-parst - ic^4 +
      expo-pars-t - ic^4dd t =
      2,Reint_0^inftyexpo-parst + ic^4dd t =
      2,Reint_ic^infty + icexpo-t^4dd t
      \[5mm] & =
      -2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
      2,Reint_infty^0expo-t^4dd t -
      2,Reint_0^1expo-parsic y^4ic,dd y
      \[5mm] & =
      -2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
      1 over 2int_0^inftyt^-3/4expo-t,dd t
      \[5mm] & =
      -2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
      1 over 2,Gammapars1 over 4
      \[1cm] & =
      1 over 2,Gammapars1 over 4
      \[2mm] & -
      2lim_R to inftybraces%
      expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
      sinpars4Rybracksy^2 - R^2,dd y
      endalign




      • $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
        $dsy_m > 1$ when $dsR > root3 over 3$.

      • It vanishes at $dsy = 0$ and at $dsy = root6R$.

      • It $dsto -infty$ when $dsy to infty$.

      • It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.



      Then,
      beginalign
      0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
      sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
      \[5mm] & <
      expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
      exppars-R^4 + 6R^2 - 1
      ,,,stackrelmrmas R to inftyto,,,
      color#f00large 0
      endalign



      beginalign
      mboxsuch thatquad
      bbxint_-infty^inftyexpo-parst - ic^4dd t =
      1 over 2,Gammapars1 over 4 approx 1.8128
      endalign




      share|cite|improve this answer











      $endgroup$















        14












        14








        14





        $begingroup$

        $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
        newcommandbraces[1]leftlbrace,#1,rightrbrace
        newcommandbracks[1]leftlbrack,#1,rightrbrack
        newcommandddmathrmd
        newcommandds[1]displaystyle#1
        newcommandexpo[1],mathrme^#1,
        newcommandicmathrmi
        newcommandmc[1]mathcal#1
        newcommandmrm[1]mathrm#1
        newcommandpars[1]left(,#1,right)
        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
        newcommandroot[2][],sqrt[#1],#2,,
        newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
        newcommandverts[1]leftvert,#1,rightvert$
        beginalign
        int_-infty^inftyexpo-parst - ic^4dd t & =
        int_0^inftybracksexpo-parst - ic^4 +
        expo-pars-t - ic^4dd t =
        2,Reint_0^inftyexpo-parst + ic^4dd t =
        2,Reint_ic^infty + icexpo-t^4dd t
        \[5mm] & =
        -2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
        2,Reint_infty^0expo-t^4dd t -
        2,Reint_0^1expo-parsic y^4ic,dd y
        \[5mm] & =
        -2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
        1 over 2int_0^inftyt^-3/4expo-t,dd t
        \[5mm] & =
        -2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
        1 over 2,Gammapars1 over 4
        \[1cm] & =
        1 over 2,Gammapars1 over 4
        \[2mm] & -
        2lim_R to inftybraces%
        expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
        sinpars4Rybracksy^2 - R^2,dd y
        endalign




        • $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
          $dsy_m > 1$ when $dsR > root3 over 3$.

        • It vanishes at $dsy = 0$ and at $dsy = root6R$.

        • It $dsto -infty$ when $dsy to infty$.

        • It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.



        Then,
        beginalign
        0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
        sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
        \[5mm] & <
        expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
        exppars-R^4 + 6R^2 - 1
        ,,,stackrelmrmas R to inftyto,,,
        color#f00large 0
        endalign



        beginalign
        mboxsuch thatquad
        bbxint_-infty^inftyexpo-parst - ic^4dd t =
        1 over 2,Gammapars1 over 4 approx 1.8128
        endalign




        share|cite|improve this answer











        $endgroup$



        $newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
        newcommandbraces[1]leftlbrace,#1,rightrbrace
        newcommandbracks[1]leftlbrack,#1,rightrbrack
        newcommandddmathrmd
        newcommandds[1]displaystyle#1
        newcommandexpo[1],mathrme^#1,
        newcommandicmathrmi
        newcommandmc[1]mathcal#1
        newcommandmrm[1]mathrm#1
        newcommandpars[1]left(,#1,right)
        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
        newcommandroot[2][],sqrt[#1],#2,,
        newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
        newcommandverts[1]leftvert,#1,rightvert$
        beginalign
        int_-infty^inftyexpo-parst - ic^4dd t & =
        int_0^inftybracksexpo-parst - ic^4 +
        expo-pars-t - ic^4dd t =
        2,Reint_0^inftyexpo-parst + ic^4dd t =
        2,Reint_ic^infty + icexpo-t^4dd t
        \[5mm] & =
        -2,lim_R to inftyReint_1^0expo-parsR + ic y^4ic,dd y -
        2,Reint_infty^0expo-t^4dd t -
        2,Reint_0^1expo-parsic y^4ic,dd y
        \[5mm] & =
        -2,lim_R to inftyImint_0^1expo-parsR + ic y^4,dd y +
        1 over 2int_0^inftyt^-3/4expo-t,dd t
        \[5mm] & =
        -2,lim_R to inftyImint_0^1exppars-R^4 - 4R^3yic + 6R^2y^2 + 4Ry^3ic - y^4,dd y +
        1 over 2,Gammapars1 over 4
        \[1cm] & =
        1 over 2,Gammapars1 over 4
        \[2mm] & -
        2lim_R to inftybraces%
        expo-R^4int_0^1expparsy^2bracks6R^2 - y^2
        sinpars4Rybracksy^2 - R^2,dd y
        endalign




        • $dsy^2pars6R^2 - y^2$ has a maximum at $dsy_m = root3R$.
          $dsy_m > 1$ when $dsR > root3 over 3$.

        • It vanishes at $dsy = 0$ and at $dsy = root6R$.

        • It $dsto -infty$ when $dsy to infty$.

        • It's clear that $ds0 < y^2pars6R^2 - y^2 < 6R^2 - 1$ when $dsy in pars0,1$ with $dsR > root3 over 3$.



        Then,
        beginalign
        0 & < vertsexpo-R^4int_0^1expparsy^2bracks6R^2 - y^2
        sinpars4Rybracksy^2 - R^2,dd y_ R > !root3/3
        \[5mm] & <
        expo-R^4int_0^1exppars1^2bracks6R^2 - 1^2,dd y =
        exppars-R^4 + 6R^2 - 1
        ,,,stackrelmrmas R to inftyto,,,
        color#f00large 0
        endalign



        beginalign
        mboxsuch thatquad
        bbxint_-infty^inftyexpo-parst - ic^4dd t =
        1 over 2,Gammapars1 over 4 approx 1.8128
        endalign





        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jun 26 '17 at 6:33

























        answered Jun 26 '17 at 6:27









        Felix MarinFelix Marin

        68.8k7109146




        68.8k7109146



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2336344%2fan-integral-for-which-i-dont-trust-wolframalpha%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

            Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

            Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers