Lyndon–Hochschild–Serre spectral sequence Contents Statement Properties Generalizations References Navigation menu10.2307/1969878196987810.1.1.540.131010.1007/BF0257046610.2277/0521567599179372210.1215/S0012-7094-48-01528-20012-709410.2307/19908510002-99471990851005243817371960948.11001

Spectral sequencesGroup theory


mathematicsgroup cohomologyhomological algebranumber theoryspectral sequenceRoger LyndonGerhard HochschildJean-Pierre Serregroupnormal subgroupG-moduleprofinite groupHeisenberg groupcentral extensioncenterwreath productfive-term exact sequenceinflation-restriction exact sequenceGrothendieck spectral sequencederived functor




In mathematics, especially in the fields of group cohomology, homological algebra and number theory, the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. The spectral sequence is named after Roger Lyndon, Gerhard Hochschild, and Jean-Pierre Serre.




Contents





  • 1 Statement

    • 1.1 Example: Cohomology of the Heisenberg group


    • 1.2 Example: Cohomology of wreath products



  • 2 Properties


  • 3 Generalizations


  • 4 References




Statement


The precise statement is as follows:


Let G be a group and N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence of cohomological type


Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H^p(G/N,H^q(N,A))to H^p+q(G,A)

and there is a spectral sequence of homological type



Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H_p(G/N,H_q(N,A))to H_p+q(G,A).

The same statement holds if G is a profinite group, N is a closed normal subgroup and H* denotes the continuous cohomology.



Example: Cohomology of the Heisenberg group


The spectral sequence can be used to compute the homology of the Heisenberg group G with integral entries, i.e., matrices of the form


(1ab01c001), a,b,c∈Z.displaystyle left(beginarrayccc1&a&b\0&1&c\0&0&1endarrayright), a,b,cin mathbb Z .

This group is a central extension


0→Z→G→Z⊕Z→0displaystyle 0to mathbb Z to Gto mathbb Z oplus mathbb Z to 0

with center Zdisplaystyle mathbb Z corresponding to the subgroup with a=c=0. The spectral sequence for the group homology, together with the analysis of a differential in this spectral sequence, shows that[1]


Hi(G,Z)={Zi=0,3Z⊕Zi=1,20i>3.{displaystyle H_i(G,mathbb Z )=leftbeginarrayccmathbb Z &i=0,3\mathbb Z oplus mathbb Z &i=1,2\0&i>3.endarrayright.


Example: Cohomology of wreath products


For a group G, the wreath product is an extension


1→Gp→G≀Z/p→Z/p→1.displaystyle 1to G^pto Gwr mathbb Z /pto mathbb Z /pto 1.

The resulting spectral sequence of group cohomology with coefficients in a field k,


Hr(Z/p,Hs(Gp,k))⇒Hr+s(G≀Z/p,k),displaystyle H^r(mathbb Z /p,H^s(G^p,k))Rightarrow H^r+s(Gwr mathbb Z /p,k),

is known to degenerate at the E2displaystyle E_2-page.[2]



Properties


The associated five-term exact sequence is the usual inflation-restriction exact sequence:


0→H1(G/N,AN)→H1(G,A)→H1(N,A)G/N→H2(G/N,AN)→H2(G,A).displaystyle 0to H^1(G/N,A^N)to H^1(G,A)to H^1(N,A)^G/Nto H^2(G/N,A^N)to H^2(G,A).


Generalizations


The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H(G, -) is the derived functor of (−)G (i.e. taking G-invariants) and the composition of the functors (−)N and (−)G/N is exactly (−)G.


A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[3]



References



  1. ^ Kevin Knudson. Homology of Linear Groups. Birkhäuser. Example A.2.4


  2. ^ Nakaoka, Minoru (1960), "Decomposition Theorem for Homology Groups of Symmetric Groups", Annals of Mathematics, Second Series, 71 (1): 16–42, doi:10.2307/1969878, JSTOR 1969878.mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em, for a brief summary see section 2 of Carlson, Jon F.; Henn, Hans-Werner (1995), "Depth and the cohomology of wreath products", Manuscripta Mathematica, 87 (2): 145–151, CiteSeerX 10.1.1.540.1310, doi:10.1007/BF02570466


  3. ^ McCleary, John (2001), A User's Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, 58 (2nd ed.), Cambridge University Press, doi:10.2277/0521567599, ISBN 978-0-521-56759-6, MR 1793722, Theorem 8bis.12



  • Lyndon, Roger C. (1948), "The cohomology theory of group extensions", Duke Mathematical Journal, 15 (1): 271–292, doi:10.1215/S0012-7094-48-01528-2, ISSN 0012-7094 (paywalled)


  • Hochschild, Gerhard; Serre, Jean-Pierre (1953), "Cohomology of group extensions", Transactions of the American Mathematical Society, 74 (1): 110–134, doi:10.2307/1990851, ISSN 0002-9947, JSTOR 1990851, MR 0052438


  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4, MR 1737196, Zbl 0948.11001


Popular posts from this blog

How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye