Lyndon–Hochschild–Serre spectral sequence Contents Statement Properties Generalizations References Navigation menu10.2307/1969878196987810.1.1.540.131010.1007/BF0257046610.2277/0521567599179372210.1215/S0012-7094-48-01528-20012-709410.2307/19908510002-99471990851005243817371960948.11001

Spectral sequencesGroup theory


mathematicsgroup cohomologyhomological algebranumber theoryspectral sequenceRoger LyndonGerhard HochschildJean-Pierre Serregroupnormal subgroupG-moduleprofinite groupHeisenberg groupcentral extensioncenterwreath productfive-term exact sequenceinflation-restriction exact sequenceGrothendieck spectral sequencederived functor




In mathematics, especially in the fields of group cohomology, homological algebra and number theory, the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. The spectral sequence is named after Roger Lyndon, Gerhard Hochschild, and Jean-Pierre Serre.




Contents





  • 1 Statement

    • 1.1 Example: Cohomology of the Heisenberg group


    • 1.2 Example: Cohomology of wreath products



  • 2 Properties


  • 3 Generalizations


  • 4 References




Statement


The precise statement is as follows:


Let G be a group and N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence of cohomological type


Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H^p(G/N,H^q(N,A))to H^p+q(G,A)

and there is a spectral sequence of homological type



Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H_p(G/N,H_q(N,A))to H_p+q(G,A).

The same statement holds if G is a profinite group, N is a closed normal subgroup and H* denotes the continuous cohomology.



Example: Cohomology of the Heisenberg group


The spectral sequence can be used to compute the homology of the Heisenberg group G with integral entries, i.e., matrices of the form


(1ab01c001), a,b,c∈Z.displaystyle left(beginarrayccc1&a&b\0&1&c\0&0&1endarrayright), a,b,cin mathbb Z .

This group is a central extension


0→Z→G→Z⊕Z→0displaystyle 0to mathbb Z to Gto mathbb Z oplus mathbb Z to 0

with center Zdisplaystyle mathbb Z corresponding to the subgroup with a=c=0. The spectral sequence for the group homology, together with the analysis of a differential in this spectral sequence, shows that[1]


Hi(G,Z)={Zi=0,3Z⊕Zi=1,20i>3.{displaystyle H_i(G,mathbb Z )=leftbeginarrayccmathbb Z &i=0,3\mathbb Z oplus mathbb Z &i=1,2\0&i>3.endarrayright.


Example: Cohomology of wreath products


For a group G, the wreath product is an extension


1→Gp→G≀Z/p→Z/p→1.displaystyle 1to G^pto Gwr mathbb Z /pto mathbb Z /pto 1.

The resulting spectral sequence of group cohomology with coefficients in a field k,


Hr(Z/p,Hs(Gp,k))⇒Hr+s(G≀Z/p,k),displaystyle H^r(mathbb Z /p,H^s(G^p,k))Rightarrow H^r+s(Gwr mathbb Z /p,k),

is known to degenerate at the E2displaystyle E_2-page.[2]



Properties


The associated five-term exact sequence is the usual inflation-restriction exact sequence:


0→H1(G/N,AN)→H1(G,A)→H1(N,A)G/N→H2(G/N,AN)→H2(G,A).displaystyle 0to H^1(G/N,A^N)to H^1(G,A)to H^1(N,A)^G/Nto H^2(G/N,A^N)to H^2(G,A).


Generalizations


The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H(G, -) is the derived functor of (−)G (i.e. taking G-invariants) and the composition of the functors (−)N and (−)G/N is exactly (−)G.


A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[3]



References



  1. ^ Kevin Knudson. Homology of Linear Groups. Birkhäuser. Example A.2.4


  2. ^ Nakaoka, Minoru (1960), "Decomposition Theorem for Homology Groups of Symmetric Groups", Annals of Mathematics, Second Series, 71 (1): 16–42, doi:10.2307/1969878, JSTOR 1969878.mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em, for a brief summary see section 2 of Carlson, Jon F.; Henn, Hans-Werner (1995), "Depth and the cohomology of wreath products", Manuscripta Mathematica, 87 (2): 145–151, CiteSeerX 10.1.1.540.1310, doi:10.1007/BF02570466


  3. ^ McCleary, John (2001), A User's Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, 58 (2nd ed.), Cambridge University Press, doi:10.2277/0521567599, ISBN 978-0-521-56759-6, MR 1793722, Theorem 8bis.12



  • Lyndon, Roger C. (1948), "The cohomology theory of group extensions", Duke Mathematical Journal, 15 (1): 271–292, doi:10.1215/S0012-7094-48-01528-2, ISSN 0012-7094 (paywalled)


  • Hochschild, Gerhard; Serre, Jean-Pierre (1953), "Cohomology of group extensions", Transactions of the American Mathematical Society, 74 (1): 110–134, doi:10.2307/1990851, ISSN 0002-9947, JSTOR 1990851, MR 0052438


  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4, MR 1737196, Zbl 0948.11001


Popular posts from this blog

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers