Lyndon–Hochschild–Serre spectral sequence Contents Statement Properties Generalizations References Navigation menu10.2307/1969878196987810.1.1.540.131010.1007/BF0257046610.2277/0521567599179372210.1215/S0012-7094-48-01528-20012-709410.2307/19908510002-99471990851005243817371960948.11001

Multi tool use
Multi tool use

Spectral sequencesGroup theory


mathematicsgroup cohomologyhomological algebranumber theoryspectral sequenceRoger LyndonGerhard HochschildJean-Pierre Serregroupnormal subgroupG-moduleprofinite groupHeisenberg groupcentral extensioncenterwreath productfive-term exact sequenceinflation-restriction exact sequenceGrothendieck spectral sequencederived functor




In mathematics, especially in the fields of group cohomology, homological algebra and number theory, the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. The spectral sequence is named after Roger Lyndon, Gerhard Hochschild, and Jean-Pierre Serre.




Contents





  • 1 Statement

    • 1.1 Example: Cohomology of the Heisenberg group


    • 1.2 Example: Cohomology of wreath products



  • 2 Properties


  • 3 Generalizations


  • 4 References




Statement


The precise statement is as follows:


Let G be a group and N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence of cohomological type


Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H^p(G/N,H^q(N,A))to H^p+q(G,A)

and there is a spectral sequence of homological type



Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H_p(G/N,H_q(N,A))to H_p+q(G,A).

The same statement holds if G is a profinite group, N is a closed normal subgroup and H* denotes the continuous cohomology.



Example: Cohomology of the Heisenberg group


The spectral sequence can be used to compute the homology of the Heisenberg group G with integral entries, i.e., matrices of the form


(1ab01c001), a,b,c∈Z.displaystyle left(beginarrayccc1&a&b\0&1&c\0&0&1endarrayright), a,b,cin mathbb Z .

This group is a central extension


0→Z→G→Z⊕Z→0displaystyle 0to mathbb Z to Gto mathbb Z oplus mathbb Z to 0

with center Zdisplaystyle mathbb Z corresponding to the subgroup with a=c=0. The spectral sequence for the group homology, together with the analysis of a differential in this spectral sequence, shows that[1]


Hi(G,Z)={Zi=0,3Z⊕Zi=1,20i>3.{displaystyle H_i(G,mathbb Z )=leftbeginarrayccmathbb Z &i=0,3\mathbb Z oplus mathbb Z &i=1,2\0&i>3.endarrayright.


Example: Cohomology of wreath products


For a group G, the wreath product is an extension


1→Gp→G≀Z/p→Z/p→1.displaystyle 1to G^pto Gwr mathbb Z /pto mathbb Z /pto 1.

The resulting spectral sequence of group cohomology with coefficients in a field k,


Hr(Z/p,Hs(Gp,k))⇒Hr+s(G≀Z/p,k),displaystyle H^r(mathbb Z /p,H^s(G^p,k))Rightarrow H^r+s(Gwr mathbb Z /p,k),

is known to degenerate at the E2displaystyle E_2-page.[2]



Properties


The associated five-term exact sequence is the usual inflation-restriction exact sequence:


0→H1(G/N,AN)→H1(G,A)→H1(N,A)G/N→H2(G/N,AN)→H2(G,A).displaystyle 0to H^1(G/N,A^N)to H^1(G,A)to H^1(N,A)^G/Nto H^2(G/N,A^N)to H^2(G,A).


Generalizations


The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H(G, -) is the derived functor of (−)G (i.e. taking G-invariants) and the composition of the functors (−)N and (−)G/N is exactly (−)G.


A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[3]



References



  1. ^ Kevin Knudson. Homology of Linear Groups. Birkhäuser. Example A.2.4


  2. ^ Nakaoka, Minoru (1960), "Decomposition Theorem for Homology Groups of Symmetric Groups", Annals of Mathematics, Second Series, 71 (1): 16–42, doi:10.2307/1969878, JSTOR 1969878.mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em, for a brief summary see section 2 of Carlson, Jon F.; Henn, Hans-Werner (1995), "Depth and the cohomology of wreath products", Manuscripta Mathematica, 87 (2): 145–151, CiteSeerX 10.1.1.540.1310, doi:10.1007/BF02570466


  3. ^ McCleary, John (2001), A User's Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, 58 (2nd ed.), Cambridge University Press, doi:10.2277/0521567599, ISBN 978-0-521-56759-6, MR 1793722, Theorem 8bis.12



  • Lyndon, Roger C. (1948), "The cohomology theory of group extensions", Duke Mathematical Journal, 15 (1): 271–292, doi:10.1215/S0012-7094-48-01528-2, ISSN 0012-7094 (paywalled)


  • Hochschild, Gerhard; Serre, Jean-Pierre (1953), "Cohomology of group extensions", Transactions of the American Mathematical Society, 74 (1): 110–134, doi:10.2307/1990851, ISSN 0002-9947, JSTOR 1990851, MR 0052438


  • Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4, MR 1737196, Zbl 0948.11001


a1wwx iaPR,PEjUfs1Q1oo,h8tWIS0qSEbVt HTxunDa I6MD,OIYO9JbfA,dO,pw8
Izn lUaGFC,cVL6X4MMUEtzTp0eMEV6f,E2nlLojR 23L3ylFi,rZwNuz2xvrPDpsjtA,X8Yq56XbfcMxQ09dLQjHhX4,xqP0Ma u z

Popular posts from this blog

Football at the 1986 Brunei Merdeka Games Contents Teams Group stage Knockout stage References Navigation menu"Brunei Merdeka Games 1986".

Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee