Lyndon–Hochschild–Serre spectral sequence Contents Statement Properties Generalizations References Navigation menu10.2307/1969878196987810.1.1.540.131010.1007/BF0257046610.2277/0521567599179372210.1215/S0012-7094-48-01528-20012-709410.2307/19908510002-99471990851005243817371960948.11001
Spectral sequencesGroup theory
mathematicsgroup cohomologyhomological algebranumber theoryspectral sequenceRoger LyndonGerhard HochschildJean-Pierre Serregroupnormal subgroupG-moduleprofinite groupHeisenberg groupcentral extensioncenterwreath productfive-term exact sequenceinflation-restriction exact sequenceGrothendieck spectral sequencederived functor
In mathematics, especially in the fields of group cohomology, homological algebra and number theory, the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G/N to the cohomology of the total group G. The spectral sequence is named after Roger Lyndon, Gerhard Hochschild, and Jean-Pierre Serre.
Contents
1 Statement
1.1 Example: Cohomology of the Heisenberg group
1.2 Example: Cohomology of wreath products
2 Properties
3 Generalizations
4 References
Statement
The precise statement is as follows:
Let G be a group and N be a normal subgroup. The latter ensures that the quotient G/N is a group, as well. Finally, let A be a G-module. Then there is a spectral sequence of cohomological type
- Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H^p(G/N,H^q(N,A))to H^p+q(G,A)
and there is a spectral sequence of homological type
Hp(G/N,Hq(N,A))→Hp+q(G,A)displaystyle H_p(G/N,H_q(N,A))to H_p+q(G,A).
The same statement holds if G is a profinite group, N is a closed normal subgroup and H* denotes the continuous cohomology.
Example: Cohomology of the Heisenberg group
The spectral sequence can be used to compute the homology of the Heisenberg group G with integral entries, i.e., matrices of the form
- (1ab01c001), a,b,c∈Z.displaystyle left(beginarrayccc1&a&b\0&1&c\0&0&1endarrayright), a,b,cin mathbb Z .
This group is a central extension
- 0→Z→G→Z⊕Z→0displaystyle 0to mathbb Z to Gto mathbb Z oplus mathbb Z to 0
with center Zdisplaystyle mathbb Z corresponding to the subgroup with a=c=0. The spectral sequence for the group homology, together with the analysis of a differential in this spectral sequence, shows that[1]
- Hi(G,Z)={Zi=0,3Z⊕Zi=1,20i>3.{displaystyle H_i(G,mathbb Z )=leftbeginarrayccmathbb Z &i=0,3\mathbb Z oplus mathbb Z &i=1,2\0&i>3.endarrayright.
Example: Cohomology of wreath products
For a group G, the wreath product is an extension
- 1→Gp→G≀Z/p→Z/p→1.displaystyle 1to G^pto Gwr mathbb Z /pto mathbb Z /pto 1.
The resulting spectral sequence of group cohomology with coefficients in a field k,
- Hr(Z/p,Hs(Gp,k))⇒Hr+s(G≀Z/p,k),displaystyle H^r(mathbb Z /p,H^s(G^p,k))Rightarrow H^r+s(Gwr mathbb Z /p,k),
is known to degenerate at the E2displaystyle E_2-page.[2]
Properties
The associated five-term exact sequence is the usual inflation-restriction exact sequence:
- 0→H1(G/N,AN)→H1(G,A)→H1(N,A)G/N→H2(G/N,AN)→H2(G,A).displaystyle 0to H^1(G/N,A^N)to H^1(G,A)to H^1(N,A)^G/Nto H^2(G/N,A^N)to H^2(G,A).
Generalizations
The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed, H∗(G, -) is the derived functor of (−)G (i.e. taking G-invariants) and the composition of the functors (−)N and (−)G/N is exactly (−)G.
A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[3]
References
^ Kevin Knudson. Homology of Linear Groups. Birkhäuser. Example A.2.4
^ Nakaoka, Minoru (1960), "Decomposition Theorem for Homology Groups of Symmetric Groups", Annals of Mathematics, Second Series, 71 (1): 16–42, doi:10.2307/1969878, JSTOR 1969878.mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em, for a brief summary see section 2 of Carlson, Jon F.; Henn, Hans-Werner (1995), "Depth and the cohomology of wreath products", Manuscripta Mathematica, 87 (2): 145–151, CiteSeerX 10.1.1.540.1310, doi:10.1007/BF02570466
^ McCleary, John (2001), A User's Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, 58 (2nd ed.), Cambridge University Press, doi:10.2277/0521567599, ISBN 978-0-521-56759-6, MR 1793722, Theorem 8bis.12
Lyndon, Roger C. (1948), "The cohomology theory of group extensions", Duke Mathematical Journal, 15 (1): 271–292, doi:10.1215/S0012-7094-48-01528-2, ISSN 0012-7094 (paywalled)
Hochschild, Gerhard; Serre, Jean-Pierre (1953), "Cohomology of group extensions", Transactions of the American Mathematical Society, 74 (1): 110–134, doi:10.2307/1990851, ISSN 0002-9947, JSTOR 1990851, MR 0052438
Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4, MR 1737196, Zbl 0948.11001