General Cesaro summation with weightCan you please check my Cesaro means proofDoes $sumlimits_n=1^inftyfrac1n^2(a_1+cdots+ a_n)$ converges when $a_n$ converges?limit of a geometric meanShow that $lim_ntoinftysqrt[sum_limitsk=0^nlambda_k]prod_limitsk=0^na_k^lambda_k = ell =lim_ntoinfty a_n$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsGiven a convergent series $sumlimits_n=1^infty a_k$, show that $limlimits_ntoinftyfrac1nsumlimits_k=1^n a_k = 0$Prove that if $s_n$ is bounded and monotonic, then $t_n =(s_1 + cdots+ s_n)/n$ converges to the same limit as $s_n$Show that $displaystyle lim_n to inftysum_i=1^n frac((n+1)-i)a_in^2 = fraca2 $Show $limlimits_n to infty frac1n^2 sumlimits_k=1^n frack+1log(k+1) = 0$Existence of $p_n$ such that $lim_n to infty fraca_1+a_2+dots+a_p_n+1a_1+a_2+dots+a_p_n=l$A generalized Cesaro Mean.. any ideas?prove that if $lim limits_n to inftyF( a_n)=ell$, then $lim limits_x to inftyF( x)=ell$Cesaro summationUnderstanding Cesaro summation proofProve $a_n$ converges to zero with $a_n+1leqslant (1-lambda_n)a_n+b_n+c_n$Prove that $limlimits_ntoinftyleft(sum_k=0^nlambda_kright)left(sum_k=0^nfraclambda_k a_kright)^-1= lim_ntoinfty a_n$Show that $lim_ntoinftysqrt[sum_limitsk=0^nlambda_k]prod_limitsk=0^na_k^lambda_k = ell =lim_ntoinfty a_n$If $prod _n=1^infty a_nneq 0$ converges then $limlimits_ntoinfty frac1sum_limitsk=0^nlambda_ksum_k=0^nlambda_k a_k =1$Prove that $prod_limitsn = k_0^infty (1 - a_n) ;$ converges to positive valueCesaro Means decrease slower than the sequence

How are passwords stolen from companies if they only store hashes?

Have the tides ever turned twice on any open problem?

PTIJ: Which Dr. Seuss books should one obtain?

Why didn’t Eve recognize the little cockroach as a living organism?

Why does Surtur say that Thor is Asgard's doom?

Knife as defense against stray dogs

Norwegian Refugee travel document

Pre-Employment Background Check With Consent For Future Checks

Why is "la Gestapo" feminine?

Imaginary part of expression too difficult to calculate

Homology of the fiber

Jem'Hadar, something strange about their life expectancy

What are the rules for concealing thieves' tools (or items in general)?

Nested Dynamic SOQL Query

The English Debate

Was World War I a war of liberals against authoritarians?

When should a starting writer get his own webpage?

Are hand made posters acceptable in Academia?

Hot air balloons as primitive bombers

If I cast the Enlarge/Reduce spell on an arrow, what weapon could it count as?

Hackerrank All Women's Codesprint 2019: Name the Product

Can other pieces capture a threatening piece and prevent a checkmate?

What is 露わになる affecting in the following sentence, '才能の持ち主' (持ち主 to be specific) or '才能'?

Why doesn't the chatan sign the ketubah?



General Cesaro summation with weight


Can you please check my Cesaro means proofDoes $sumlimits_n=1^inftyfrac1n^2(a_1+cdots+ a_n)$ converges when $a_n$ converges?limit of a geometric meanShow that $lim_ntoinftysqrt[sum_limitsk=0^nlambda_k]prod_limitsk=0^na_k^lambda_k = ell =lim_ntoinfty a_n$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsGiven a convergent series $sumlimits_n=1^infty a_k$, show that $limlimits_ntoinftyfrac1nsumlimits_k=1^n a_k = 0$Prove that if $s_n$ is bounded and monotonic, then $t_n =(s_1 + cdots+ s_n)/n$ converges to the same limit as $s_n$Show that $displaystyle lim_n to inftysum_i=1^n frac((n+1)-i)a_in^2 = fraca2 $Show $limlimits_n to infty frac1n^2 sumlimits_k=1^n frack+1log(k+1) = 0$Existence of $p_n$ such that $lim_n to infty fraca_1+a_2+dots+a_p_n+1a_1+a_2+dots+a_p_n=l$A generalized Cesaro Mean.. any ideas?prove that if $lim limits_n to inftyF( a_n)=ell$, then $lim limits_x to inftyF( x)=ell$Cesaro summationUnderstanding Cesaro summation proofProve $a_n$ converges to zero with $a_n+1leqslant (1-lambda_n)a_n+b_n+c_n$Prove that $limlimits_ntoinftyleft(sum_k=0^nlambda_kright)left(sum_k=0^nfraclambda_k a_kright)^-1= lim_ntoinfty a_n$Show that $lim_ntoinftysqrt[sum_limitsk=0^nlambda_k]prod_limitsk=0^na_k^lambda_k = ell =lim_ntoinfty a_n$If $prod _n=1^infty a_nneq 0$ converges then $limlimits_ntoinfty frac1sum_limitsk=0^nlambda_ksum_k=0^nlambda_k a_k =1$Prove that $prod_limitsn = k_0^infty (1 - a_n) ;$ converges to positive valueCesaro Means decrease slower than the sequence













2












$begingroup$



Assume that $a_nto ell $ is a convergent sequence of complex numbers and $lambda_n$ is a sequence of positive real numbers such that $sumlimits_k=0^inftylambda_k = infty$




Then, show that,
$$lim_ntoinfty frac1sum_limitsk=0^nlambda_k sum_limitsk=0^nlambda_k a_k=ell =lim_ntoinfty a_n$$



(Note that : This is more general than the special case where, $lambda_n= 1$)












share|cite|improve this question











$endgroup$











  • $begingroup$
    Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
    $endgroup$
    – Harry
    Sep 22 '17 at 12:22











  • $begingroup$
    there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
    $endgroup$
    – Guy Fsone
    Sep 22 '17 at 12:24















2












$begingroup$



Assume that $a_nto ell $ is a convergent sequence of complex numbers and $lambda_n$ is a sequence of positive real numbers such that $sumlimits_k=0^inftylambda_k = infty$




Then, show that,
$$lim_ntoinfty frac1sum_limitsk=0^nlambda_k sum_limitsk=0^nlambda_k a_k=ell =lim_ntoinfty a_n$$



(Note that : This is more general than the special case where, $lambda_n= 1$)












share|cite|improve this question











$endgroup$











  • $begingroup$
    Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
    $endgroup$
    – Harry
    Sep 22 '17 at 12:22











  • $begingroup$
    there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
    $endgroup$
    – Guy Fsone
    Sep 22 '17 at 12:24













2












2








2


4



$begingroup$



Assume that $a_nto ell $ is a convergent sequence of complex numbers and $lambda_n$ is a sequence of positive real numbers such that $sumlimits_k=0^inftylambda_k = infty$




Then, show that,
$$lim_ntoinfty frac1sum_limitsk=0^nlambda_k sum_limitsk=0^nlambda_k a_k=ell =lim_ntoinfty a_n$$



(Note that : This is more general than the special case where, $lambda_n= 1$)












share|cite|improve this question











$endgroup$





Assume that $a_nto ell $ is a convergent sequence of complex numbers and $lambda_n$ is a sequence of positive real numbers such that $sumlimits_k=0^inftylambda_k = infty$




Then, show that,
$$lim_ntoinfty frac1sum_limitsk=0^nlambda_k sum_limitsk=0^nlambda_k a_k=ell =lim_ntoinfty a_n$$



(Note that : This is more general than the special case where, $lambda_n= 1$)









calculus real-analysis sequences-and-series limits cesaro-summable






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 13 at 8:35









BijanDatta

309113




309113










asked Sep 22 '17 at 12:14









Guy FsoneGuy Fsone

17.3k43074




17.3k43074











  • $begingroup$
    Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
    $endgroup$
    – Harry
    Sep 22 '17 at 12:22











  • $begingroup$
    there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
    $endgroup$
    – Guy Fsone
    Sep 22 '17 at 12:24
















  • $begingroup$
    Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
    $endgroup$
    – Harry
    Sep 22 '17 at 12:22











  • $begingroup$
    there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
    $endgroup$
    – Guy Fsone
    Sep 22 '17 at 12:24















$begingroup$
Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
$endgroup$
– Harry
Sep 22 '17 at 12:22





$begingroup$
Is there any other restriction? With $lambda_k=k$, the sum diverges (unless perhaps $l=0$).
$endgroup$
– Harry
Sep 22 '17 at 12:22













$begingroup$
there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
$endgroup$
– Guy Fsone
Sep 22 '17 at 12:24




$begingroup$
there is no problem if the sum diverge. the result is still true see here for instance math.stackexchange.com/questions/2440315/…
$endgroup$
– Guy Fsone
Sep 22 '17 at 12:24










2 Answers
2






active

oldest

votes


















4












$begingroup$

First you can assume that the $(a_n)$ are real, by considering
the sequences
$(operatornameRe a_n)_n$ and $(operatornameIm a_n)_n$
separately.



And then it is an immediate application of the Stolz–Cesàro theorem to
$$
A_n := sum_k=0^n lambda_n a_n quad, quad B_n := sum_k=0^n lambda_n
$$
since $(B_n)$ is strictly increasing and unbounded, and
$$
fracA_n+1 - A_nB_n+1 - B_n = a_n+1 to l
$$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Let $varepsilon >0$ and $N$such that $|a_k-l|le varepsilon $ for all $k>N$
    Then, for $n>N$ we have,
    beginsplitleft| fracsum_limitsk=0^nlambda_k a_ksum_limitsk=0^nlambda_k -lright|
    &= &left| fracsum_limitsk=0^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
    &= &left| fracsum_limitsk=0^Nlambda_k (a_k - l)+sum_limitsk=N^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
    &le & fracMsum_limitsk=0^nlambda_k + fracsum_limitsk=N^nlambda_k underbrace a_k - lright_levarepsilonsum_limitsk=0^nlambda_k \
    &le&
    fracMsum_limitsk=0^nlambda_k + varepsilonto 0
    endsplit
    since $sum_limitsk=0^Nlambda_kto infty$.
    Where $M= left|sum_limitsk=0^Nlambda_k( a_k-l)right|$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
      $endgroup$
      – Blackbird
      Sep 22 '17 at 13:28










    • $begingroup$
      yes of course $varepsilon $is negligible
      $endgroup$
      – Guy Fsone
      Sep 22 '17 at 13:35










    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2440333%2fgeneral-cesaro-summation-with-weight%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    First you can assume that the $(a_n)$ are real, by considering
    the sequences
    $(operatornameRe a_n)_n$ and $(operatornameIm a_n)_n$
    separately.



    And then it is an immediate application of the Stolz–Cesàro theorem to
    $$
    A_n := sum_k=0^n lambda_n a_n quad, quad B_n := sum_k=0^n lambda_n
    $$
    since $(B_n)$ is strictly increasing and unbounded, and
    $$
    fracA_n+1 - A_nB_n+1 - B_n = a_n+1 to l
    $$






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      First you can assume that the $(a_n)$ are real, by considering
      the sequences
      $(operatornameRe a_n)_n$ and $(operatornameIm a_n)_n$
      separately.



      And then it is an immediate application of the Stolz–Cesàro theorem to
      $$
      A_n := sum_k=0^n lambda_n a_n quad, quad B_n := sum_k=0^n lambda_n
      $$
      since $(B_n)$ is strictly increasing and unbounded, and
      $$
      fracA_n+1 - A_nB_n+1 - B_n = a_n+1 to l
      $$






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        First you can assume that the $(a_n)$ are real, by considering
        the sequences
        $(operatornameRe a_n)_n$ and $(operatornameIm a_n)_n$
        separately.



        And then it is an immediate application of the Stolz–Cesàro theorem to
        $$
        A_n := sum_k=0^n lambda_n a_n quad, quad B_n := sum_k=0^n lambda_n
        $$
        since $(B_n)$ is strictly increasing and unbounded, and
        $$
        fracA_n+1 - A_nB_n+1 - B_n = a_n+1 to l
        $$






        share|cite|improve this answer









        $endgroup$



        First you can assume that the $(a_n)$ are real, by considering
        the sequences
        $(operatornameRe a_n)_n$ and $(operatornameIm a_n)_n$
        separately.



        And then it is an immediate application of the Stolz–Cesàro theorem to
        $$
        A_n := sum_k=0^n lambda_n a_n quad, quad B_n := sum_k=0^n lambda_n
        $$
        since $(B_n)$ is strictly increasing and unbounded, and
        $$
        fracA_n+1 - A_nB_n+1 - B_n = a_n+1 to l
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 22 '17 at 12:53









        Martin RMartin R

        30k33558




        30k33558





















            2












            $begingroup$

            Let $varepsilon >0$ and $N$such that $|a_k-l|le varepsilon $ for all $k>N$
            Then, for $n>N$ we have,
            beginsplitleft| fracsum_limitsk=0^nlambda_k a_ksum_limitsk=0^nlambda_k -lright|
            &= &left| fracsum_limitsk=0^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &= &left| fracsum_limitsk=0^Nlambda_k (a_k - l)+sum_limitsk=N^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &le & fracMsum_limitsk=0^nlambda_k + fracsum_limitsk=N^nlambda_k underbrace a_k - lright_levarepsilonsum_limitsk=0^nlambda_k \
            &le&
            fracMsum_limitsk=0^nlambda_k + varepsilonto 0
            endsplit
            since $sum_limitsk=0^Nlambda_kto infty$.
            Where $M= left|sum_limitsk=0^Nlambda_k( a_k-l)right|$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
              $endgroup$
              – Blackbird
              Sep 22 '17 at 13:28










            • $begingroup$
              yes of course $varepsilon $is negligible
              $endgroup$
              – Guy Fsone
              Sep 22 '17 at 13:35















            2












            $begingroup$

            Let $varepsilon >0$ and $N$such that $|a_k-l|le varepsilon $ for all $k>N$
            Then, for $n>N$ we have,
            beginsplitleft| fracsum_limitsk=0^nlambda_k a_ksum_limitsk=0^nlambda_k -lright|
            &= &left| fracsum_limitsk=0^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &= &left| fracsum_limitsk=0^Nlambda_k (a_k - l)+sum_limitsk=N^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &le & fracMsum_limitsk=0^nlambda_k + fracsum_limitsk=N^nlambda_k underbrace a_k - lright_levarepsilonsum_limitsk=0^nlambda_k \
            &le&
            fracMsum_limitsk=0^nlambda_k + varepsilonto 0
            endsplit
            since $sum_limitsk=0^Nlambda_kto infty$.
            Where $M= left|sum_limitsk=0^Nlambda_k( a_k-l)right|$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
              $endgroup$
              – Blackbird
              Sep 22 '17 at 13:28










            • $begingroup$
              yes of course $varepsilon $is negligible
              $endgroup$
              – Guy Fsone
              Sep 22 '17 at 13:35













            2












            2








            2





            $begingroup$

            Let $varepsilon >0$ and $N$such that $|a_k-l|le varepsilon $ for all $k>N$
            Then, for $n>N$ we have,
            beginsplitleft| fracsum_limitsk=0^nlambda_k a_ksum_limitsk=0^nlambda_k -lright|
            &= &left| fracsum_limitsk=0^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &= &left| fracsum_limitsk=0^Nlambda_k (a_k - l)+sum_limitsk=N^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &le & fracMsum_limitsk=0^nlambda_k + fracsum_limitsk=N^nlambda_k underbrace a_k - lright_levarepsilonsum_limitsk=0^nlambda_k \
            &le&
            fracMsum_limitsk=0^nlambda_k + varepsilonto 0
            endsplit
            since $sum_limitsk=0^Nlambda_kto infty$.
            Where $M= left|sum_limitsk=0^Nlambda_k( a_k-l)right|$






            share|cite|improve this answer









            $endgroup$



            Let $varepsilon >0$ and $N$such that $|a_k-l|le varepsilon $ for all $k>N$
            Then, for $n>N$ we have,
            beginsplitleft| fracsum_limitsk=0^nlambda_k a_ksum_limitsk=0^nlambda_k -lright|
            &= &left| fracsum_limitsk=0^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &= &left| fracsum_limitsk=0^Nlambda_k (a_k - l)+sum_limitsk=N^nlambda_k (a_k - l)sum_limitsk=0^nlambda_k right|\
            &le & fracMsum_limitsk=0^nlambda_k + fracsum_limitsk=N^nlambda_k underbrace a_k - lright_levarepsilonsum_limitsk=0^nlambda_k \
            &le&
            fracMsum_limitsk=0^nlambda_k + varepsilonto 0
            endsplit
            since $sum_limitsk=0^Nlambda_kto infty$.
            Where $M= left|sum_limitsk=0^Nlambda_k( a_k-l)right|$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Sep 22 '17 at 12:58









            Guy FsoneGuy Fsone

            17.3k43074




            17.3k43074











            • $begingroup$
              In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
              $endgroup$
              – Blackbird
              Sep 22 '17 at 13:28










            • $begingroup$
              yes of course $varepsilon $is negligible
              $endgroup$
              – Guy Fsone
              Sep 22 '17 at 13:35
















            • $begingroup$
              In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
              $endgroup$
              – Blackbird
              Sep 22 '17 at 13:28










            • $begingroup$
              yes of course $varepsilon $is negligible
              $endgroup$
              – Guy Fsone
              Sep 22 '17 at 13:35















            $begingroup$
            In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
            $endgroup$
            – Blackbird
            Sep 22 '17 at 13:28




            $begingroup$
            In the last inequality you mean to say the right-hand side goes to $varepsilon$ as $ntoinfty$.
            $endgroup$
            – Blackbird
            Sep 22 '17 at 13:28












            $begingroup$
            yes of course $varepsilon $is negligible
            $endgroup$
            – Guy Fsone
            Sep 22 '17 at 13:35




            $begingroup$
            yes of course $varepsilon $is negligible
            $endgroup$
            – Guy Fsone
            Sep 22 '17 at 13:35

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2440333%2fgeneral-cesaro-summation-with-weight%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Solar Wings Breeze Design and development Specifications (Breeze) References Navigation menu1368-485X"Hang glider: Breeze (Solar Wings)"e

            Kathakali Contents Etymology and nomenclature History Repertoire Songs and musical instruments Traditional plays Styles: Sampradayam Training centers and awards Relationship to other dance forms See also Notes References External links Navigation menueThe Illustrated Encyclopedia of Hinduism: A-MSouth Asian Folklore: An EncyclopediaRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to PlayKathakali Dance-drama: Where Gods and Demons Come to Play10.1353/atj.2005.0004The Illustrated Encyclopedia of Hinduism: A-MEncyclopedia of HinduismKathakali Dance-drama: Where Gods and Demons Come to PlaySonic Liturgy: Ritual and Music in Hindu Tradition"The Mirror of Gesture"Kathakali Dance-drama: Where Gods and Demons Come to Play"Kathakali"Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceMedieval Indian Literature: An AnthologyThe Oxford Companion to Indian TheatreSouth Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri LankaThe Rise of Performance Studies: Rethinking Richard Schechner's Broad SpectrumIndian Theatre: Traditions of PerformanceModern Asian Theatre and Performance 1900-2000Critical Theory and PerformanceBetween Theater and AnthropologyKathakali603847011Indian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceIndian Theatre: Traditions of PerformanceBetween Theater and AnthropologyBetween Theater and AnthropologyNambeesan Smaraka AwardsArchivedThe Cambridge Guide to TheatreRoutledge International Encyclopedia of Women: Global Women's Issues and KnowledgeThe Garland Encyclopedia of World Music: South Asia : the Indian subcontinentThe Ethos of Noh: Actors and Their Art10.2307/1145740By Means of Performance: Intercultural Studies of Theatre and Ritual10.1017/s204912550000100xReconceiving the Renaissance: A Critical ReaderPerformance TheoryListening to Theatre: The Aural Dimension of Beijing Opera10.2307/1146013Kathakali: The Art of the Non-WorldlyOn KathakaliKathakali, the dance theatreThe Kathakali Complex: Performance & StructureKathakali Dance-Drama: Where Gods and Demons Come to Play10.1093/obo/9780195399318-0071Drama and Ritual of Early Hinduism"In the Shadow of Hollywood Orientalism: Authentic East Indian Dancing"10.1080/08949460490274013Sanskrit Play Production in Ancient IndiaIndian Music: History and StructureBharata, the Nāṭyaśāstra233639306Table of Contents2238067286469807Dance In Indian Painting10.2307/32047833204783Kathakali Dance-Theatre: A Visual Narrative of Sacred Indian MimeIndian Classical Dance: The Renaissance and BeyondKathakali: an indigenous art-form of Keralaeee

            Method to test if a number is a perfect power? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Detecting perfect squares faster than by extracting square rooteffective way to get the integer sequence A181392 from oeisA rarely mentioned fact about perfect powersHow many numbers such $n$ are there that $n<100,lfloorsqrtn rfloor mid n$Check perfect squareness by modulo division against multiple basesFor what pair of integers $(a,b)$ is $3^a + 7^b$ a perfect square.Do there exist any positive integers $n$ such that $lfloore^nrfloor$ is a perfect power? What is the probability that one exists?finding perfect power factors of an integerProve that the sequence contains a perfect square for any natural number $m $ in the domain of $f$ .Counting Perfect Powers