Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)For $0<q_n<1, limlimits_ntoinfty q_n =q < 1$, prove $limlimits_ntoinfty n^kq_n^n = 0$ for all $k in Bbb N$ without L'HôpitalSimplify trig function and calculate limit $limlimits_x to 0 fractan x-sin xsin^2 x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$Calculate $limlimits_xtoinftyleft(fracx-2x+2right)^3x$Evaluating $intlimits_0^infty frace^x1+e^2xmathrm dx$, alternate methodsFind $limlimits_xto0fracsqrt1+tan x-sqrt1+xsin^2x$Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalSolving $limlimits_x to infty fracsin(x)x-pi$ using L'Hôpital's ruleDoes $limlimits_xto 1^-left( ln x right)left( ln (1-x) right)$ exist?How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$

How can I reduce the gap between left and right of cdot with a macro?

Performance gap between vector<bool> and array

Did Krishna say in Bhagavad Gita "I am in every living being"

An adverb for when you're not exaggerating

Can the Great Weapon Master feat's damage bonus and accuracy penalty apply to attacks from the Spiritual Weapon spell?

Why aren't air breathing engines used as small first stages?

SF book about people trapped in a series of worlds they imagine

What is "gratricide"?

What was the first language to use conditional keywords?

When a candle burns, why does the top of wick glow if bottom of flame is hottest?

Putting class ranking in CV, but against dept guidelines

Significance of Cersei's obsession with elephants?

A term for a woman complaining about things/begging in a cute/childish way

How fail-safe is nr as stop bytes?

How would a mousetrap for use in space work?

Hangman Game with C++

What do you call the main part of a joke?

Find 108 by using 3,4,6

Is there hard evidence that the grant peer review system performs significantly better than random?

Selecting user stories during sprint planning

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

Should I follow up with an employee I believe overracted to a mistake I made?



Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)For $0<q_n<1, limlimits_ntoinfty q_n =q < 1$, prove $limlimits_ntoinfty n^kq_n^n = 0$ for all $k in Bbb N$ without L'HôpitalSimplify trig function and calculate limit $limlimits_x to 0 fractan x-sin xsin^2 x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$Calculate $limlimits_xtoinftyleft(fracx-2x+2right)^3x$Evaluating $intlimits_0^infty frace^x1+e^2xmathrm dx$, alternate methodsFind $limlimits_xto0fracsqrt1+tan x-sqrt1+xsin^2x$Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalSolving $limlimits_x to infty fracsin(x)x-pi$ using L'Hôpital's ruleDoes $limlimits_xto 1^-left( ln x right)left( ln (1-x) right)$ exist?How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$










23












$begingroup$



Evaluate the following limit:
$$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$




I have done the problem .
My method:
First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .



I would like to see other different ways to solve for the limit.










share|cite|improve this question











$endgroup$
















    23












    $begingroup$



    Evaluate the following limit:
    $$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$




    I have done the problem .
    My method:
    First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .



    I would like to see other different ways to solve for the limit.










    share|cite|improve this question











    $endgroup$














      23












      23








      23


      6



      $begingroup$



      Evaluate the following limit:
      $$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$




      I have done the problem .
      My method:
      First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .



      I would like to see other different ways to solve for the limit.










      share|cite|improve this question











      $endgroup$





      Evaluate the following limit:
      $$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$




      I have done the problem .
      My method:
      First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .



      I would like to see other different ways to solve for the limit.







      calculus sequences-and-series limits integration convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited May 28 '14 at 11:12







      d80d2729a352b1366139fc119d3345

















      asked Apr 11 '13 at 14:56









      d80d2729a352b1366139fc119d3345d80d2729a352b1366139fc119d3345

      5,18022351




      5,18022351




















          6 Answers
          6






          active

          oldest

          votes


















          11












          $begingroup$

          You can use the following fact



          $$f(x) = log sin x$$ is integrable in $(0, pi/2)$



          and



          $$int_0^pi/2 -log sin x textdx = fracpi log 22$$



          Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that



          for some $c in (0, frac1n)$



          $$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$



          Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get



          $$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$






          share|cite|improve this answer









          $endgroup$








          • 2




            $begingroup$
            You were faster (+1)
            $endgroup$
            – Ron Gordon
            Apr 11 '13 at 15:38










          • $begingroup$
            @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
            $endgroup$
            – Aryabhata
            Apr 11 '13 at 15:39










          • $begingroup$
            @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
            $endgroup$
            – Julien
            Apr 11 '13 at 15:45










          • $begingroup$
            @julien: Thanks! Yes, that works too.
            $endgroup$
            – Aryabhata
            Apr 11 '13 at 15:48










          • $begingroup$
            @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
            $endgroup$
            – d80d2729a352b1366139fc119d3345
            Apr 11 '13 at 15:50


















          7












          $begingroup$

          This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
          $lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
          $$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
          Differentiating under the integral sign gives
          $$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
          The limit of this as $epsilon rightarrow 0$ is
          $$-int_0^pi over 2 ln(sin(x)),dx$$
          This integral is well-known (and I'm sure it's been done on this site), and the above is just
          $$pi over 2ln(2)$$






          share|cite|improve this answer









          $endgroup$




















            7












            $begingroup$

            This is only a different way to get it to the final integral , but here goes,
            $sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$



            So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$



            Using, this we get
            $nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$






            share|cite|improve this answer









            $endgroup$




















              6












              $begingroup$

              $newcommand+^dagger
              newcommandangles[1]leftlangle, #1 ,rightrangle
              newcommandbraces[1]leftlbrace, #1 ,rightrbrace
              newcommandbracks[1]leftlbrack, #1 ,rightrbrack
              newcommandceil[1],leftlceil, #1 ,rightrceil,
              newcommandddrm d
              newcommanddowndownarrow
              newcommandds[1]displaystyle#1
              newcommandexpo[1],rm e^#1,
              newcommandfermi,rm f
              newcommandfloor[1],leftlfloor #1 rightrfloor,
              newcommandhalf1 over 2
              newcommandicrm i
              newcommandiffLongleftrightarrow
              newcommandimpLongrightarrow
              newcommandisdiv,left.rightvert,
              newcommandket[1]leftvert #1rightrangle
              newcommandol[1]overline#1
              newcommandpars[1]left(, #1 ,right)
              newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
              newcommandppcal P
              newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
              newcommandsech,rm sech
              newcommandsgn,rm sgn
              newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
              newcommandul[1]underline#1
              newcommandverts[1]leftvert, #1 ,rightvert
              newcommandwt[1]widetilde#1$
              $dslim_n to inftybraces%
              nint_0^pi/2,
              bracks1 - root[n],sinparsx,rm dx: large ?$




              beginalign
              int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
              ,dd t over root1 - t^2
              =int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
              \[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
              =half,rm Bpars1 over 2n + half,half
              \[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
              endalign




              When $dsn gg 1$:
              beginalign
              int_0^pi/2root[n]sinparsx,rm dx
              &approx
              rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
              over Gammapars1 + Gammapars1Psipars1/pars2n
              =pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
              \[3mm]&approx
              pi over 2,bracks1 + Psipars1/2 over 2n
              bracks1 - Psipars1 over 2n
              approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
              endalign




              $$
              color#00f%
              lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
              ,rm dx
              =pi over 4,bracksPsipars1 - Psiparshalf
              =color#00fhalf,pilnpars2
              $$
              since $dsPsipars1 = -gamma$ and
              $dsPsiparshalf = -gamma - 2lnpars2$. See
              this table.







              share|cite|improve this answer











              $endgroup$




















                1












                $begingroup$

                You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
                $$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
                left(fracn+12 nright)Gamma
                left(frac12 nright)right)$$
                So we define:
                $$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
                left(fracn+12 nright)Gamma
                left(frac12 nright)right)$$
                And performing the limit:
                $$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
                ^(0)left(frac12right)right]$$






                share|cite|improve this answer









                $endgroup$




















                  0












                  $begingroup$

                  Result



                  Let



                  $$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$



                  then



                  $$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$



                  Derivation 1



                  Attempting to perform the limit directly under the integral we write



                  $$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
                  simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
                  = - log(sin(x)) + O(frac1n)$$



                  and the limiting integral becomes



                  $$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$



                  Derivation 2



                  The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to



                  $$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$



                  Now performing the limit under the integral sign gives



                  $$lim_nto infty , n left(1-t^1/nright)=-log (t)$$



                  so that the integral becomes



                  $$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$



                  which is the announced result.






                  share|cite|improve this answer











                  $endgroup$













                    Your Answer








                    StackExchange.ready(function()
                    var channelOptions =
                    tags: "".split(" "),
                    id: "69"
                    ;
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function()
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled)
                    StackExchange.using("snippets", function()
                    createEditor();
                    );

                    else
                    createEditor();

                    );

                    function createEditor()
                    StackExchange.prepareEditor(
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader:
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    ,
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    );



                    );













                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f358405%2fevaluating-lim-limits-n-to-infty-n-int-limits-0-pi-2%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown

























                    6 Answers
                    6






                    active

                    oldest

                    votes








                    6 Answers
                    6






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    11












                    $begingroup$

                    You can use the following fact



                    $$f(x) = log sin x$$ is integrable in $(0, pi/2)$



                    and



                    $$int_0^pi/2 -log sin x textdx = fracpi log 22$$



                    Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that



                    for some $c in (0, frac1n)$



                    $$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$



                    Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get



                    $$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$






                    share|cite|improve this answer









                    $endgroup$








                    • 2




                      $begingroup$
                      You were faster (+1)
                      $endgroup$
                      – Ron Gordon
                      Apr 11 '13 at 15:38










                    • $begingroup$
                      @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:39










                    • $begingroup$
                      @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                      $endgroup$
                      – Julien
                      Apr 11 '13 at 15:45










                    • $begingroup$
                      @julien: Thanks! Yes, that works too.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:48










                    • $begingroup$
                      @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                      $endgroup$
                      – d80d2729a352b1366139fc119d3345
                      Apr 11 '13 at 15:50















                    11












                    $begingroup$

                    You can use the following fact



                    $$f(x) = log sin x$$ is integrable in $(0, pi/2)$



                    and



                    $$int_0^pi/2 -log sin x textdx = fracpi log 22$$



                    Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that



                    for some $c in (0, frac1n)$



                    $$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$



                    Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get



                    $$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$






                    share|cite|improve this answer









                    $endgroup$








                    • 2




                      $begingroup$
                      You were faster (+1)
                      $endgroup$
                      – Ron Gordon
                      Apr 11 '13 at 15:38










                    • $begingroup$
                      @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:39










                    • $begingroup$
                      @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                      $endgroup$
                      – Julien
                      Apr 11 '13 at 15:45










                    • $begingroup$
                      @julien: Thanks! Yes, that works too.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:48










                    • $begingroup$
                      @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                      $endgroup$
                      – d80d2729a352b1366139fc119d3345
                      Apr 11 '13 at 15:50













                    11












                    11








                    11





                    $begingroup$

                    You can use the following fact



                    $$f(x) = log sin x$$ is integrable in $(0, pi/2)$



                    and



                    $$int_0^pi/2 -log sin x textdx = fracpi log 22$$



                    Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that



                    for some $c in (0, frac1n)$



                    $$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$



                    Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get



                    $$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$






                    share|cite|improve this answer









                    $endgroup$



                    You can use the following fact



                    $$f(x) = log sin x$$ is integrable in $(0, pi/2)$



                    and



                    $$int_0^pi/2 -log sin x textdx = fracpi log 22$$



                    Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that



                    for some $c in (0, frac1n)$



                    $$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$



                    Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get



                    $$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 11 '13 at 15:37









                    AryabhataAryabhata

                    70.4k6157247




                    70.4k6157247







                    • 2




                      $begingroup$
                      You were faster (+1)
                      $endgroup$
                      – Ron Gordon
                      Apr 11 '13 at 15:38










                    • $begingroup$
                      @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:39










                    • $begingroup$
                      @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                      $endgroup$
                      – Julien
                      Apr 11 '13 at 15:45










                    • $begingroup$
                      @julien: Thanks! Yes, that works too.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:48










                    • $begingroup$
                      @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                      $endgroup$
                      – d80d2729a352b1366139fc119d3345
                      Apr 11 '13 at 15:50












                    • 2




                      $begingroup$
                      You were faster (+1)
                      $endgroup$
                      – Ron Gordon
                      Apr 11 '13 at 15:38










                    • $begingroup$
                      @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:39










                    • $begingroup$
                      @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                      $endgroup$
                      – Julien
                      Apr 11 '13 at 15:45










                    • $begingroup$
                      @julien: Thanks! Yes, that works too.
                      $endgroup$
                      – Aryabhata
                      Apr 11 '13 at 15:48










                    • $begingroup$
                      @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                      $endgroup$
                      – d80d2729a352b1366139fc119d3345
                      Apr 11 '13 at 15:50







                    2




                    2




                    $begingroup$
                    You were faster (+1)
                    $endgroup$
                    – Ron Gordon
                    Apr 11 '13 at 15:38




                    $begingroup$
                    You were faster (+1)
                    $endgroup$
                    – Ron Gordon
                    Apr 11 '13 at 15:38












                    $begingroup$
                    @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                    $endgroup$
                    – Aryabhata
                    Apr 11 '13 at 15:39




                    $begingroup$
                    @RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
                    $endgroup$
                    – Aryabhata
                    Apr 11 '13 at 15:39












                    $begingroup$
                    @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                    $endgroup$
                    – Julien
                    Apr 11 '13 at 15:45




                    $begingroup$
                    @Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
                    $endgroup$
                    – Julien
                    Apr 11 '13 at 15:45












                    $begingroup$
                    @julien: Thanks! Yes, that works too.
                    $endgroup$
                    – Aryabhata
                    Apr 11 '13 at 15:48




                    $begingroup$
                    @julien: Thanks! Yes, that works too.
                    $endgroup$
                    – Aryabhata
                    Apr 11 '13 at 15:48












                    $begingroup$
                    @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                    $endgroup$
                    – d80d2729a352b1366139fc119d3345
                    Apr 11 '13 at 15:50




                    $begingroup$
                    @Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
                    $endgroup$
                    – d80d2729a352b1366139fc119d3345
                    Apr 11 '13 at 15:50











                    7












                    $begingroup$

                    This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
                    $lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
                    $$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
                    Differentiating under the integral sign gives
                    $$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
                    The limit of this as $epsilon rightarrow 0$ is
                    $$-int_0^pi over 2 ln(sin(x)),dx$$
                    This integral is well-known (and I'm sure it's been done on this site), and the above is just
                    $$pi over 2ln(2)$$






                    share|cite|improve this answer









                    $endgroup$

















                      7












                      $begingroup$

                      This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
                      $lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
                      $$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
                      Differentiating under the integral sign gives
                      $$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
                      The limit of this as $epsilon rightarrow 0$ is
                      $$-int_0^pi over 2 ln(sin(x)),dx$$
                      This integral is well-known (and I'm sure it's been done on this site), and the above is just
                      $$pi over 2ln(2)$$






                      share|cite|improve this answer









                      $endgroup$















                        7












                        7








                        7





                        $begingroup$

                        This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
                        $lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
                        $$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
                        Differentiating under the integral sign gives
                        $$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
                        The limit of this as $epsilon rightarrow 0$ is
                        $$-int_0^pi over 2 ln(sin(x)),dx$$
                        This integral is well-known (and I'm sure it's been done on this site), and the above is just
                        $$pi over 2ln(2)$$






                        share|cite|improve this answer









                        $endgroup$



                        This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
                        $lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
                        $$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
                        Differentiating under the integral sign gives
                        $$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
                        The limit of this as $epsilon rightarrow 0$ is
                        $$-int_0^pi over 2 ln(sin(x)),dx$$
                        This integral is well-known (and I'm sure it's been done on this site), and the above is just
                        $$pi over 2ln(2)$$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Apr 11 '13 at 15:43









                        ZarraxZarrax

                        35.7k250104




                        35.7k250104





















                            7












                            $begingroup$

                            This is only a different way to get it to the final integral , but here goes,
                            $sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$



                            So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$



                            Using, this we get
                            $nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$






                            share|cite|improve this answer









                            $endgroup$

















                              7












                              $begingroup$

                              This is only a different way to get it to the final integral , but here goes,
                              $sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$



                              So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$



                              Using, this we get
                              $nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$






                              share|cite|improve this answer









                              $endgroup$















                                7












                                7








                                7





                                $begingroup$

                                This is only a different way to get it to the final integral , but here goes,
                                $sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$



                                So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$



                                Using, this we get
                                $nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$






                                share|cite|improve this answer









                                $endgroup$



                                This is only a different way to get it to the final integral , but here goes,
                                $sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$



                                So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$



                                Using, this we get
                                $nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Apr 11 '13 at 15:50









                                Ishan BanerjeeIshan Banerjee

                                5,00121438




                                5,00121438





















                                    6












                                    $begingroup$

                                    $newcommand+^dagger
                                    newcommandangles[1]leftlangle, #1 ,rightrangle
                                    newcommandbraces[1]leftlbrace, #1 ,rightrbrace
                                    newcommandbracks[1]leftlbrack, #1 ,rightrbrack
                                    newcommandceil[1],leftlceil, #1 ,rightrceil,
                                    newcommandddrm d
                                    newcommanddowndownarrow
                                    newcommandds[1]displaystyle#1
                                    newcommandexpo[1],rm e^#1,
                                    newcommandfermi,rm f
                                    newcommandfloor[1],leftlfloor #1 rightrfloor,
                                    newcommandhalf1 over 2
                                    newcommandicrm i
                                    newcommandiffLongleftrightarrow
                                    newcommandimpLongrightarrow
                                    newcommandisdiv,left.rightvert,
                                    newcommandket[1]leftvert #1rightrangle
                                    newcommandol[1]overline#1
                                    newcommandpars[1]left(, #1 ,right)
                                    newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                    newcommandppcal P
                                    newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
                                    newcommandsech,rm sech
                                    newcommandsgn,rm sgn
                                    newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
                                    newcommandul[1]underline#1
                                    newcommandverts[1]leftvert, #1 ,rightvert
                                    newcommandwt[1]widetilde#1$
                                    $dslim_n to inftybraces%
                                    nint_0^pi/2,
                                    bracks1 - root[n],sinparsx,rm dx: large ?$




                                    beginalign
                                    int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
                                    ,dd t over root1 - t^2
                                    =int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
                                    \[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
                                    =half,rm Bpars1 over 2n + half,half
                                    \[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
                                    endalign




                                    When $dsn gg 1$:
                                    beginalign
                                    int_0^pi/2root[n]sinparsx,rm dx
                                    &approx
                                    rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
                                    over Gammapars1 + Gammapars1Psipars1/pars2n
                                    =pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
                                    \[3mm]&approx
                                    pi over 2,bracks1 + Psipars1/2 over 2n
                                    bracks1 - Psipars1 over 2n
                                    approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
                                    endalign




                                    $$
                                    color#00f%
                                    lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
                                    ,rm dx
                                    =pi over 4,bracksPsipars1 - Psiparshalf
                                    =color#00fhalf,pilnpars2
                                    $$
                                    since $dsPsipars1 = -gamma$ and
                                    $dsPsiparshalf = -gamma - 2lnpars2$. See
                                    this table.







                                    share|cite|improve this answer











                                    $endgroup$

















                                      6












                                      $begingroup$

                                      $newcommand+^dagger
                                      newcommandangles[1]leftlangle, #1 ,rightrangle
                                      newcommandbraces[1]leftlbrace, #1 ,rightrbrace
                                      newcommandbracks[1]leftlbrack, #1 ,rightrbrack
                                      newcommandceil[1],leftlceil, #1 ,rightrceil,
                                      newcommandddrm d
                                      newcommanddowndownarrow
                                      newcommandds[1]displaystyle#1
                                      newcommandexpo[1],rm e^#1,
                                      newcommandfermi,rm f
                                      newcommandfloor[1],leftlfloor #1 rightrfloor,
                                      newcommandhalf1 over 2
                                      newcommandicrm i
                                      newcommandiffLongleftrightarrow
                                      newcommandimpLongrightarrow
                                      newcommandisdiv,left.rightvert,
                                      newcommandket[1]leftvert #1rightrangle
                                      newcommandol[1]overline#1
                                      newcommandpars[1]left(, #1 ,right)
                                      newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                      newcommandppcal P
                                      newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
                                      newcommandsech,rm sech
                                      newcommandsgn,rm sgn
                                      newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
                                      newcommandul[1]underline#1
                                      newcommandverts[1]leftvert, #1 ,rightvert
                                      newcommandwt[1]widetilde#1$
                                      $dslim_n to inftybraces%
                                      nint_0^pi/2,
                                      bracks1 - root[n],sinparsx,rm dx: large ?$




                                      beginalign
                                      int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
                                      ,dd t over root1 - t^2
                                      =int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
                                      \[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
                                      =half,rm Bpars1 over 2n + half,half
                                      \[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
                                      endalign




                                      When $dsn gg 1$:
                                      beginalign
                                      int_0^pi/2root[n]sinparsx,rm dx
                                      &approx
                                      rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
                                      over Gammapars1 + Gammapars1Psipars1/pars2n
                                      =pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
                                      \[3mm]&approx
                                      pi over 2,bracks1 + Psipars1/2 over 2n
                                      bracks1 - Psipars1 over 2n
                                      approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
                                      endalign




                                      $$
                                      color#00f%
                                      lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
                                      ,rm dx
                                      =pi over 4,bracksPsipars1 - Psiparshalf
                                      =color#00fhalf,pilnpars2
                                      $$
                                      since $dsPsipars1 = -gamma$ and
                                      $dsPsiparshalf = -gamma - 2lnpars2$. See
                                      this table.







                                      share|cite|improve this answer











                                      $endgroup$















                                        6












                                        6








                                        6





                                        $begingroup$

                                        $newcommand+^dagger
                                        newcommandangles[1]leftlangle, #1 ,rightrangle
                                        newcommandbraces[1]leftlbrace, #1 ,rightrbrace
                                        newcommandbracks[1]leftlbrack, #1 ,rightrbrack
                                        newcommandceil[1],leftlceil, #1 ,rightrceil,
                                        newcommandddrm d
                                        newcommanddowndownarrow
                                        newcommandds[1]displaystyle#1
                                        newcommandexpo[1],rm e^#1,
                                        newcommandfermi,rm f
                                        newcommandfloor[1],leftlfloor #1 rightrfloor,
                                        newcommandhalf1 over 2
                                        newcommandicrm i
                                        newcommandiffLongleftrightarrow
                                        newcommandimpLongrightarrow
                                        newcommandisdiv,left.rightvert,
                                        newcommandket[1]leftvert #1rightrangle
                                        newcommandol[1]overline#1
                                        newcommandpars[1]left(, #1 ,right)
                                        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                        newcommandppcal P
                                        newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
                                        newcommandsech,rm sech
                                        newcommandsgn,rm sgn
                                        newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
                                        newcommandul[1]underline#1
                                        newcommandverts[1]leftvert, #1 ,rightvert
                                        newcommandwt[1]widetilde#1$
                                        $dslim_n to inftybraces%
                                        nint_0^pi/2,
                                        bracks1 - root[n],sinparsx,rm dx: large ?$




                                        beginalign
                                        int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
                                        ,dd t over root1 - t^2
                                        =int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
                                        \[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
                                        =half,rm Bpars1 over 2n + half,half
                                        \[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
                                        endalign




                                        When $dsn gg 1$:
                                        beginalign
                                        int_0^pi/2root[n]sinparsx,rm dx
                                        &approx
                                        rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
                                        over Gammapars1 + Gammapars1Psipars1/pars2n
                                        =pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
                                        \[3mm]&approx
                                        pi over 2,bracks1 + Psipars1/2 over 2n
                                        bracks1 - Psipars1 over 2n
                                        approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
                                        endalign




                                        $$
                                        color#00f%
                                        lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
                                        ,rm dx
                                        =pi over 4,bracksPsipars1 - Psiparshalf
                                        =color#00fhalf,pilnpars2
                                        $$
                                        since $dsPsipars1 = -gamma$ and
                                        $dsPsiparshalf = -gamma - 2lnpars2$. See
                                        this table.







                                        share|cite|improve this answer











                                        $endgroup$



                                        $newcommand+^dagger
                                        newcommandangles[1]leftlangle, #1 ,rightrangle
                                        newcommandbraces[1]leftlbrace, #1 ,rightrbrace
                                        newcommandbracks[1]leftlbrack, #1 ,rightrbrack
                                        newcommandceil[1],leftlceil, #1 ,rightrceil,
                                        newcommandddrm d
                                        newcommanddowndownarrow
                                        newcommandds[1]displaystyle#1
                                        newcommandexpo[1],rm e^#1,
                                        newcommandfermi,rm f
                                        newcommandfloor[1],leftlfloor #1 rightrfloor,
                                        newcommandhalf1 over 2
                                        newcommandicrm i
                                        newcommandiffLongleftrightarrow
                                        newcommandimpLongrightarrow
                                        newcommandisdiv,left.rightvert,
                                        newcommandket[1]leftvert #1rightrangle
                                        newcommandol[1]overline#1
                                        newcommandpars[1]left(, #1 ,right)
                                        newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
                                        newcommandppcal P
                                        newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
                                        newcommandsech,rm sech
                                        newcommandsgn,rm sgn
                                        newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
                                        newcommandul[1]underline#1
                                        newcommandverts[1]leftvert, #1 ,rightvert
                                        newcommandwt[1]widetilde#1$
                                        $dslim_n to inftybraces%
                                        nint_0^pi/2,
                                        bracks1 - root[n],sinparsx,rm dx: large ?$




                                        beginalign
                                        int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
                                        ,dd t over root1 - t^2
                                        =int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
                                        \[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
                                        =half,rm Bpars1 over 2n + half,half
                                        \[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
                                        endalign




                                        When $dsn gg 1$:
                                        beginalign
                                        int_0^pi/2root[n]sinparsx,rm dx
                                        &approx
                                        rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
                                        over Gammapars1 + Gammapars1Psipars1/pars2n
                                        =pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
                                        \[3mm]&approx
                                        pi over 2,bracks1 + Psipars1/2 over 2n
                                        bracks1 - Psipars1 over 2n
                                        approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
                                        endalign




                                        $$
                                        color#00f%
                                        lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
                                        ,rm dx
                                        =pi over 4,bracksPsipars1 - Psiparshalf
                                        =color#00fhalf,pilnpars2
                                        $$
                                        since $dsPsipars1 = -gamma$ and
                                        $dsPsiparshalf = -gamma - 2lnpars2$. See
                                        this table.








                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited May 4 '14 at 5:12

























                                        answered Aug 24 '13 at 19:44









                                        Felix MarinFelix Marin

                                        69.1k7110147




                                        69.1k7110147





















                                            1












                                            $begingroup$

                                            You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
                                            $$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
                                            left(fracn+12 nright)Gamma
                                            left(frac12 nright)right)$$
                                            So we define:
                                            $$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
                                            left(fracn+12 nright)Gamma
                                            left(frac12 nright)right)$$
                                            And performing the limit:
                                            $$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
                                            ^(0)left(frac12right)right]$$






                                            share|cite|improve this answer









                                            $endgroup$

















                                              1












                                              $begingroup$

                                              You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
                                              $$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
                                              left(fracn+12 nright)Gamma
                                              left(frac12 nright)right)$$
                                              So we define:
                                              $$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
                                              left(fracn+12 nright)Gamma
                                              left(frac12 nright)right)$$
                                              And performing the limit:
                                              $$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
                                              ^(0)left(frac12right)right]$$






                                              share|cite|improve this answer









                                              $endgroup$















                                                1












                                                1








                                                1





                                                $begingroup$

                                                You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
                                                $$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
                                                left(fracn+12 nright)Gamma
                                                left(frac12 nright)right)$$
                                                So we define:
                                                $$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
                                                left(fracn+12 nright)Gamma
                                                left(frac12 nright)right)$$
                                                And performing the limit:
                                                $$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
                                                ^(0)left(frac12right)right]$$






                                                share|cite|improve this answer









                                                $endgroup$



                                                You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
                                                $$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
                                                left(fracn+12 nright)Gamma
                                                left(frac12 nright)right)$$
                                                So we define:
                                                $$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
                                                left(fracn+12 nright)Gamma
                                                left(frac12 nright)right)$$
                                                And performing the limit:
                                                $$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
                                                ^(0)left(frac12right)right]$$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Nov 7 '16 at 16:44









                                                Alessio BocciAlessio Bocci

                                                667




                                                667





















                                                    0












                                                    $begingroup$

                                                    Result



                                                    Let



                                                    $$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$



                                                    then



                                                    $$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$



                                                    Derivation 1



                                                    Attempting to perform the limit directly under the integral we write



                                                    $$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
                                                    simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
                                                    = - log(sin(x)) + O(frac1n)$$



                                                    and the limiting integral becomes



                                                    $$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$



                                                    Derivation 2



                                                    The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to



                                                    $$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$



                                                    Now performing the limit under the integral sign gives



                                                    $$lim_nto infty , n left(1-t^1/nright)=-log (t)$$



                                                    so that the integral becomes



                                                    $$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$



                                                    which is the announced result.






                                                    share|cite|improve this answer











                                                    $endgroup$

















                                                      0












                                                      $begingroup$

                                                      Result



                                                      Let



                                                      $$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$



                                                      then



                                                      $$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$



                                                      Derivation 1



                                                      Attempting to perform the limit directly under the integral we write



                                                      $$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
                                                      simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
                                                      = - log(sin(x)) + O(frac1n)$$



                                                      and the limiting integral becomes



                                                      $$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$



                                                      Derivation 2



                                                      The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to



                                                      $$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$



                                                      Now performing the limit under the integral sign gives



                                                      $$lim_nto infty , n left(1-t^1/nright)=-log (t)$$



                                                      so that the integral becomes



                                                      $$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$



                                                      which is the announced result.






                                                      share|cite|improve this answer











                                                      $endgroup$















                                                        0












                                                        0








                                                        0





                                                        $begingroup$

                                                        Result



                                                        Let



                                                        $$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$



                                                        then



                                                        $$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$



                                                        Derivation 1



                                                        Attempting to perform the limit directly under the integral we write



                                                        $$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
                                                        simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
                                                        = - log(sin(x)) + O(frac1n)$$



                                                        and the limiting integral becomes



                                                        $$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$



                                                        Derivation 2



                                                        The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to



                                                        $$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$



                                                        Now performing the limit under the integral sign gives



                                                        $$lim_nto infty , n left(1-t^1/nright)=-log (t)$$



                                                        so that the integral becomes



                                                        $$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$



                                                        which is the announced result.






                                                        share|cite|improve this answer











                                                        $endgroup$



                                                        Result



                                                        Let



                                                        $$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$



                                                        then



                                                        $$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$



                                                        Derivation 1



                                                        Attempting to perform the limit directly under the integral we write



                                                        $$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
                                                        simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
                                                        = - log(sin(x)) + O(frac1n)$$



                                                        and the limiting integral becomes



                                                        $$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$



                                                        Derivation 2



                                                        The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to



                                                        $$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$



                                                        Now performing the limit under the integral sign gives



                                                        $$lim_nto infty , n left(1-t^1/nright)=-log (t)$$



                                                        so that the integral becomes



                                                        $$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$



                                                        which is the announced result.







                                                        share|cite|improve this answer














                                                        share|cite|improve this answer



                                                        share|cite|improve this answer








                                                        edited Mar 27 at 14:58

























                                                        answered Mar 27 at 14:39









                                                        Dr. Wolfgang HintzeDr. Wolfgang Hintze

                                                        3,985621




                                                        3,985621



























                                                            draft saved

                                                            draft discarded
















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid


                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.

                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function ()
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f358405%2fevaluating-lim-limits-n-to-infty-n-int-limits-0-pi-2%23new-answer', 'question_page');

                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

                                                            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

                                                            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye