Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)For $0<q_n<1, limlimits_ntoinfty q_n =q < 1$, prove $limlimits_ntoinfty n^kq_n^n = 0$ for all $k in Bbb N$ without L'HôpitalSimplify trig function and calculate limit $limlimits_x to 0 fractan x-sin xsin^2 x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$Calculate $limlimits_xtoinftyleft(fracx-2x+2right)^3x$Evaluating $intlimits_0^infty frace^x1+e^2xmathrm dx$, alternate methodsFind $limlimits_xto0fracsqrt1+tan x-sqrt1+xsin^2x$Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalSolving $limlimits_x to infty fracsin(x)x-pi$ using L'Hôpital's ruleDoes $limlimits_xto 1^-left( ln x right)left( ln (1-x) right)$ exist?How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$
How can I reduce the gap between left and right of cdot with a macro?
Performance gap between vector<bool> and array
Did Krishna say in Bhagavad Gita "I am in every living being"
An adverb for when you're not exaggerating
Can the Great Weapon Master feat's damage bonus and accuracy penalty apply to attacks from the Spiritual Weapon spell?
Why aren't air breathing engines used as small first stages?
SF book about people trapped in a series of worlds they imagine
What is "gratricide"?
What was the first language to use conditional keywords?
When a candle burns, why does the top of wick glow if bottom of flame is hottest?
Putting class ranking in CV, but against dept guidelines
Significance of Cersei's obsession with elephants?
A term for a woman complaining about things/begging in a cute/childish way
How fail-safe is nr as stop bytes?
How would a mousetrap for use in space work?
Hangman Game with C++
What do you call the main part of a joke?
Find 108 by using 3,4,6
Is there hard evidence that the grant peer review system performs significantly better than random?
Selecting user stories during sprint planning
Is it possible for SQL statements to execute concurrently within a single session in SQL Server?
Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode
Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?
Should I follow up with an employee I believe overracted to a mistake I made?
Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)For $0<q_n<1, limlimits_ntoinfty q_n =q < 1$, prove $limlimits_ntoinfty n^kq_n^n = 0$ for all $k in Bbb N$ without L'HôpitalSimplify trig function and calculate limit $limlimits_x to 0 fractan x-sin xsin^2 x$L'Hopital's Rule with $lim limits_x to inftyfrac2^xe^left(x^2right)$Calculate $limlimits_xtoinftyleft(fracx-2x+2right)^3x$Evaluating $intlimits_0^infty frace^x1+e^2xmathrm dx$, alternate methodsFind $limlimits_xto0fracsqrt1+tan x-sqrt1+xsin^2x$Evaluate $limlimits_xtoinftyx(fracpi2-arctan(x))$ without using L'HôpitalSolving $limlimits_x to infty fracsin(x)x-pi$ using L'Hôpital's ruleDoes $limlimits_xto 1^-left( ln x right)left( ln (1-x) right)$ exist?How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$
$begingroup$
Evaluate the following limit:
$$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$
I have done the problem .
My method:
First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .
I would like to see other different ways to solve for the limit.
calculus sequences-and-series limits integration convergence
$endgroup$
add a comment |
$begingroup$
Evaluate the following limit:
$$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$
I have done the problem .
My method:
First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .
I would like to see other different ways to solve for the limit.
calculus sequences-and-series limits integration convergence
$endgroup$
add a comment |
$begingroup$
Evaluate the following limit:
$$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$
I have done the problem .
My method:
First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .
I would like to see other different ways to solve for the limit.
calculus sequences-and-series limits integration convergence
$endgroup$
Evaluate the following limit:
$$lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx $$
I have done the problem .
My method:
First I applied L'Hôpital's rule as it can be made of the form $frac0 0$. Then I used weighted mean value theorem and using sandwich theorem reduced the limit to an integral which could be evaluated using properties of define integration .
I would like to see other different ways to solve for the limit.
calculus sequences-and-series limits integration convergence
calculus sequences-and-series limits integration convergence
edited May 28 '14 at 11:12
d80d2729a352b1366139fc119d3345
asked Apr 11 '13 at 14:56
d80d2729a352b1366139fc119d3345d80d2729a352b1366139fc119d3345
5,18022351
5,18022351
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
You can use the following fact
$$f(x) = log sin x$$ is integrable in $(0, pi/2)$
and
$$int_0^pi/2 -log sin x textdx = fracpi log 22$$
Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that
for some $c in (0, frac1n)$
$$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$
Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get
$$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$
$endgroup$
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
|
show 2 more comments
$begingroup$
This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
$lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
$$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
Differentiating under the integral sign gives
$$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
The limit of this as $epsilon rightarrow 0$ is
$$-int_0^pi over 2 ln(sin(x)),dx$$
This integral is well-known (and I'm sure it's been done on this site), and the above is just
$$pi over 2ln(2)$$
$endgroup$
add a comment |
$begingroup$
This is only a different way to get it to the final integral , but here goes,
$sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$
So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$
Using, this we get
$nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$
$endgroup$
add a comment |
$begingroup$
$newcommand+^dagger
newcommandangles[1]leftlangle, #1 ,rightrangle
newcommandbraces[1]leftlbrace, #1 ,rightrbrace
newcommandbracks[1]leftlbrack, #1 ,rightrbrack
newcommandceil[1],leftlceil, #1 ,rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left(, #1 ,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert
newcommandwt[1]widetilde#1$
$dslim_n to inftybraces%
nint_0^pi/2,
bracks1 - root[n],sinparsx,rm dx: large ?$
beginalign
int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
,dd t over root1 - t^2
=int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
\[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
=half,rm Bpars1 over 2n + half,half
\[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
endalign
When $dsn gg 1$:
beginalign
int_0^pi/2root[n]sinparsx,rm dx
&approx
rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
over Gammapars1 + Gammapars1Psipars1/pars2n
=pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
\[3mm]&approx
pi over 2,bracks1 + Psipars1/2 over 2n
bracks1 - Psipars1 over 2n
approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
endalign
$$
color#00f%
lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
,rm dx
=pi over 4,bracksPsipars1 - Psiparshalf
=color#00fhalf,pilnpars2
$$
since $dsPsipars1 = -gamma$ and
$dsPsiparshalf = -gamma - 2lnpars2$. See
this table.
$endgroup$
add a comment |
$begingroup$
You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
$$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
So we define:
$$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
And performing the limit:
$$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
^(0)left(frac12right)right]$$
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$
then
$$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$
Derivation 1
Attempting to perform the limit directly under the integral we write
$$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
= - log(sin(x)) + O(frac1n)$$
and the limiting integral becomes
$$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$
Derivation 2
The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to
$$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$
Now performing the limit under the integral sign gives
$$lim_nto infty , n left(1-t^1/nright)=-log (t)$$
so that the integral becomes
$$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$
which is the announced result.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f358405%2fevaluating-lim-limits-n-to-infty-n-int-limits-0-pi-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use the following fact
$$f(x) = log sin x$$ is integrable in $(0, pi/2)$
and
$$int_0^pi/2 -log sin x textdx = fracpi log 22$$
Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that
for some $c in (0, frac1n)$
$$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$
Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get
$$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$
$endgroup$
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
|
show 2 more comments
$begingroup$
You can use the following fact
$$f(x) = log sin x$$ is integrable in $(0, pi/2)$
and
$$int_0^pi/2 -log sin x textdx = fracpi log 22$$
Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that
for some $c in (0, frac1n)$
$$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$
Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get
$$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$
$endgroup$
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
|
show 2 more comments
$begingroup$
You can use the following fact
$$f(x) = log sin x$$ is integrable in $(0, pi/2)$
and
$$int_0^pi/2 -log sin x textdx = fracpi log 22$$
Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that
for some $c in (0, frac1n)$
$$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$
Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get
$$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$
$endgroup$
You can use the following fact
$$f(x) = log sin x$$ is integrable in $(0, pi/2)$
and
$$int_0^pi/2 -log sin x textdx = fracpi log 22$$
Now by the mean value theorem (applied to $(sin x)^y$, as a function of $y$), we have that
for some $c in (0, frac1n)$
$$ dfrac1 - sqrt[n]sin xfrac1n = -(sin x)^c log sin x le -log sin x$$
Since $log sin x$ is integrable, by the dominated convergence theorem, we can take the limit inside the integral to get
$$lim_n to inftyint_0^pi/2 n(1 - sqrt[n]sin x)textdx = int_0^pi/2 lim_n to inftyn(1 - sqrt[n]sin x) textdx= int_0^pi/2 -log sin x textdx = fracpi log 22$$
answered Apr 11 '13 at 15:37
AryabhataAryabhata
70.4k6157247
70.4k6157247
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
|
show 2 more comments
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
2
2
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
You were faster (+1)
$endgroup$
– Ron Gordon
Apr 11 '13 at 15:38
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@RonGordon: Yeah, typing latex can be a pain :-) It is so much easier to write it out by hand.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:39
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@Aryabhata Nicely done, +1. I was writing a proof with the monotone convergence theorem instead (the sequence of integrands is nondecreasing). But we don't need an almost duplicate answer.
$endgroup$
– Julien
Apr 11 '13 at 15:45
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@julien: Thanks! Yes, that works too.
$endgroup$
– Aryabhata
Apr 11 '13 at 15:48
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
$begingroup$
@Aryabhata, Nice answer. Dominated Convergence theorem is a new idea for me. I will learn it. +1.
$endgroup$
– d80d2729a352b1366139fc119d3345
Apr 11 '13 at 15:50
|
show 2 more comments
$begingroup$
This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
$lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
$$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
Differentiating under the integral sign gives
$$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
The limit of this as $epsilon rightarrow 0$ is
$$-int_0^pi over 2 ln(sin(x)),dx$$
This integral is well-known (and I'm sure it's been done on this site), and the above is just
$$pi over 2ln(2)$$
$endgroup$
add a comment |
$begingroup$
This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
$lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
$$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
Differentiating under the integral sign gives
$$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
The limit of this as $epsilon rightarrow 0$ is
$$-int_0^pi over 2 ln(sin(x)),dx$$
This integral is well-known (and I'm sure it's been done on this site), and the above is just
$$pi over 2ln(2)$$
$endgroup$
add a comment |
$begingroup$
This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
$lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
$$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
Differentiating under the integral sign gives
$$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
The limit of this as $epsilon rightarrow 0$ is
$$-int_0^pi over 2 ln(sin(x)),dx$$
This integral is well-known (and I'm sure it's been done on this site), and the above is just
$$pi over 2ln(2)$$
$endgroup$
This is equivalent to finding $lim_epsilon rightarrow 0 f(epsilon) over epsilon$, where $f(epsilon) = int_0^pi over 2 (1 - sin(x)^epsilon),dx$. Since $lim_epsilon rightarrow 0 sin(x)^epsilon = 1$, one has
$lim_epsilon rightarrow 0 f(epsilon) = 0$, and so by L'Hopital's rule you get
$$lim_epsilon rightarrow 0 f(epsilon) over epsilon = lim_epsilon rightarrow 0 f'(epsilon)$$
Differentiating under the integral sign gives
$$f'(epsilon) = -int_0^pi over 2 ln(sin(x))(sin(x))^epsilon,dx$$
The limit of this as $epsilon rightarrow 0$ is
$$-int_0^pi over 2 ln(sin(x)),dx$$
This integral is well-known (and I'm sure it's been done on this site), and the above is just
$$pi over 2ln(2)$$
answered Apr 11 '13 at 15:43
ZarraxZarrax
35.7k250104
35.7k250104
add a comment |
add a comment |
$begingroup$
This is only a different way to get it to the final integral , but here goes,
$sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$
So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$
Using, this we get
$nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$
$endgroup$
add a comment |
$begingroup$
This is only a different way to get it to the final integral , but here goes,
$sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$
So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$
Using, this we get
$nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$
$endgroup$
add a comment |
$begingroup$
This is only a different way to get it to the final integral , but here goes,
$sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$
So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$
Using, this we get
$nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$
$endgroup$
This is only a different way to get it to the final integral , but here goes,
$sqrt[n]sin x=exp(dfraclog sin xn)=1+dfraclog sin xn+ o(frac1n)$
So, $1-sqrt[n]sin x=-dfraclog sin xn +o(frac 1 n)$
Using, this we get
$nint_0^frac pi 21-sqrt[n]sin xdx=int_0^frac pi 2 -log sin x dx +O(frac 1 n)=dfracpi log 22 +O(frac 1 n)todfracpi log 22$
answered Apr 11 '13 at 15:50
Ishan BanerjeeIshan Banerjee
5,00121438
5,00121438
add a comment |
add a comment |
$begingroup$
$newcommand+^dagger
newcommandangles[1]leftlangle, #1 ,rightrangle
newcommandbraces[1]leftlbrace, #1 ,rightrbrace
newcommandbracks[1]leftlbrack, #1 ,rightrbrack
newcommandceil[1],leftlceil, #1 ,rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left(, #1 ,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert
newcommandwt[1]widetilde#1$
$dslim_n to inftybraces%
nint_0^pi/2,
bracks1 - root[n],sinparsx,rm dx: large ?$
beginalign
int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
,dd t over root1 - t^2
=int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
\[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
=half,rm Bpars1 over 2n + half,half
\[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
endalign
When $dsn gg 1$:
beginalign
int_0^pi/2root[n]sinparsx,rm dx
&approx
rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
over Gammapars1 + Gammapars1Psipars1/pars2n
=pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
\[3mm]&approx
pi over 2,bracks1 + Psipars1/2 over 2n
bracks1 - Psipars1 over 2n
approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
endalign
$$
color#00f%
lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
,rm dx
=pi over 4,bracksPsipars1 - Psiparshalf
=color#00fhalf,pilnpars2
$$
since $dsPsipars1 = -gamma$ and
$dsPsiparshalf = -gamma - 2lnpars2$. See
this table.
$endgroup$
add a comment |
$begingroup$
$newcommand+^dagger
newcommandangles[1]leftlangle, #1 ,rightrangle
newcommandbraces[1]leftlbrace, #1 ,rightrbrace
newcommandbracks[1]leftlbrack, #1 ,rightrbrack
newcommandceil[1],leftlceil, #1 ,rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left(, #1 ,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert
newcommandwt[1]widetilde#1$
$dslim_n to inftybraces%
nint_0^pi/2,
bracks1 - root[n],sinparsx,rm dx: large ?$
beginalign
int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
,dd t over root1 - t^2
=int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
\[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
=half,rm Bpars1 over 2n + half,half
\[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
endalign
When $dsn gg 1$:
beginalign
int_0^pi/2root[n]sinparsx,rm dx
&approx
rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
over Gammapars1 + Gammapars1Psipars1/pars2n
=pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
\[3mm]&approx
pi over 2,bracks1 + Psipars1/2 over 2n
bracks1 - Psipars1 over 2n
approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
endalign
$$
color#00f%
lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
,rm dx
=pi over 4,bracksPsipars1 - Psiparshalf
=color#00fhalf,pilnpars2
$$
since $dsPsipars1 = -gamma$ and
$dsPsiparshalf = -gamma - 2lnpars2$. See
this table.
$endgroup$
add a comment |
$begingroup$
$newcommand+^dagger
newcommandangles[1]leftlangle, #1 ,rightrangle
newcommandbraces[1]leftlbrace, #1 ,rightrbrace
newcommandbracks[1]leftlbrack, #1 ,rightrbrack
newcommandceil[1],leftlceil, #1 ,rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left(, #1 ,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert
newcommandwt[1]widetilde#1$
$dslim_n to inftybraces%
nint_0^pi/2,
bracks1 - root[n],sinparsx,rm dx: large ?$
beginalign
int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
,dd t over root1 - t^2
=int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
\[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
=half,rm Bpars1 over 2n + half,half
\[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
endalign
When $dsn gg 1$:
beginalign
int_0^pi/2root[n]sinparsx,rm dx
&approx
rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
over Gammapars1 + Gammapars1Psipars1/pars2n
=pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
\[3mm]&approx
pi over 2,bracks1 + Psipars1/2 over 2n
bracks1 - Psipars1 over 2n
approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
endalign
$$
color#00f%
lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
,rm dx
=pi over 4,bracksPsipars1 - Psiparshalf
=color#00fhalf,pilnpars2
$$
since $dsPsipars1 = -gamma$ and
$dsPsiparshalf = -gamma - 2lnpars2$. See
this table.
$endgroup$
$newcommand+^dagger
newcommandangles[1]leftlangle, #1 ,rightrangle
newcommandbraces[1]leftlbrace, #1 ,rightrbrace
newcommandbracks[1]leftlbrack, #1 ,rightrbrack
newcommandceil[1],leftlceil, #1 ,rightrceil,
newcommandddrm d
newcommanddowndownarrow
newcommandds[1]displaystyle#1
newcommandexpo[1],rm e^#1,
newcommandfermi,rm f
newcommandfloor[1],leftlfloor #1 rightrfloor,
newcommandhalf1 over 2
newcommandicrm i
newcommandiffLongleftrightarrow
newcommandimpLongrightarrow
newcommandisdiv,left.rightvert,
newcommandket[1]leftvert #1rightrangle
newcommandol[1]overline#1
newcommandpars[1]left(, #1 ,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandppcal P
newcommandroot[2][],sqrt[#1]vphantomlarge A,#2,,
newcommandsech,rm sech
newcommandsgn,rm sgn
newcommandtotald[3][]fracrm d^#1 #2rm d #3^#1
newcommandul[1]underline#1
newcommandverts[1]leftvert, #1 ,rightvert
newcommandwt[1]widetilde#1$
$dslim_n to inftybraces%
nint_0^pi/2,
bracks1 - root[n],sinparsx,rm dx: large ?$
beginalign
int_0^pi/2root[n]sinparsx,rm dx&=int_0^1t^1/n
,dd t over root1 - t^2
=int_0^1t^1/pars2npars1 - t^-1/2,half,t^-1/2,dd t
\[3mm]&=halfint_0^1t^1/pars2n - 1/2pars1 - t^-1/2,dd t
=half,rm Bpars1 over 2n + half,half
\[3mm]&=half,Gammapars1/bracks2n + 1/2Gammapars1/2 over Gammapars1/bracks2n + 1
endalign
When $dsn gg 1$:
beginalign
int_0^pi/2root[n]sinparsx,rm dx
&approx
rootpi over 2,Gammapars1/2 + Gammapars1/2Psipars1/2/pars2n
over Gammapars1 + Gammapars1Psipars1/pars2n
=pi over 2,1 + Psipars1/2/pars2n over 1 + Psipars1/pars2n
\[3mm]&approx
pi over 2,bracks1 + Psipars1/2 over 2n
bracks1 - Psipars1 over 2n
approx pi over 2,bracks1 + Psipars1/2 - Psipars1 over 2n
endalign
$$
color#00f%
lim_n to inftybracesnint_0^pi/2,bracks1 - root[n],sinparsx
,rm dx
=pi over 4,bracksPsipars1 - Psiparshalf
=color#00fhalf,pilnpars2
$$
since $dsPsipars1 = -gamma$ and
$dsPsiparshalf = -gamma - 2lnpars2$. See
this table.
edited May 4 '14 at 5:12
answered Aug 24 '13 at 19:44
Felix MarinFelix Marin
69.1k7110147
69.1k7110147
add a comment |
add a comment |
$begingroup$
You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
$$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
So we define:
$$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
And performing the limit:
$$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
^(0)left(frac12right)right]$$
$endgroup$
add a comment |
$begingroup$
You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
$$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
So we define:
$$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
And performing the limit:
$$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
^(0)left(frac12right)right]$$
$endgroup$
add a comment |
$begingroup$
You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
$$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
So we define:
$$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
And performing the limit:
$$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
^(0)left(frac12right)right]$$
$endgroup$
You can have a close form solution; infact if $Re(1/n)>-1$ you have that the integral collapse in:
$$int_0^pi/2left[1-(sin(x))^1/nright]dx=frac12 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
So we define:
$$y(n)=fracn2 left(pi -frac2 sqrtpi n Gamma
left(fracn+12 nright)Gamma
left(frac12 nright)right)$$
And performing the limit:
$$lim_n rightarrow + inftyy(n)=-frac14 pi left[gamma +psi
^(0)left(frac12right)right]$$
answered Nov 7 '16 at 16:44
Alessio BocciAlessio Bocci
667
667
add a comment |
add a comment |
$begingroup$
Result
Let
$$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$
then
$$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$
Derivation 1
Attempting to perform the limit directly under the integral we write
$$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
= - log(sin(x)) + O(frac1n)$$
and the limiting integral becomes
$$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$
Derivation 2
The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to
$$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$
Now performing the limit under the integral sign gives
$$lim_nto infty , n left(1-t^1/nright)=-log (t)$$
so that the integral becomes
$$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$
which is the announced result.
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$
then
$$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$
Derivation 1
Attempting to perform the limit directly under the integral we write
$$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
= - log(sin(x)) + O(frac1n)$$
and the limiting integral becomes
$$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$
Derivation 2
The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to
$$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$
Now performing the limit under the integral sign gives
$$lim_nto infty , n left(1-t^1/nright)=-log (t)$$
so that the integral becomes
$$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$
which is the announced result.
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$
then
$$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$
Derivation 1
Attempting to perform the limit directly under the integral we write
$$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
= - log(sin(x)) + O(frac1n)$$
and the limiting integral becomes
$$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$
Derivation 2
The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to
$$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$
Now performing the limit under the integral sign gives
$$lim_nto infty , n left(1-t^1/nright)=-log (t)$$
so that the integral becomes
$$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$
which is the announced result.
$endgroup$
Result
Let
$$f(n) = n int_0^fracpi2 (1- sin(x)^frac1n), dx$$
then
$$lim_nto infty , f( n)=fracpi2 log(2) simeq 1.088793045151801$$
Derivation 1
Attempting to perform the limit directly under the integral we write
$$n(1-sin(x)^frac1n) = nleft(1-expleft(frac1n logleft(sin(x)right)right)right)\
simeq nleft(1-1 - (frac1n) log(sin(x))+O(frac1n^2)right) \
= - log(sin(x)) + O(frac1n)$$
and the limiting integral becomes
$$- int_0^fracpi2 log(sin(x)) = fracpi2 log(2)$$
Derivation 2
The transformation $sin(x) to t$, $dx to fracdtsqrt1-t^2$leads to
$$f(n)= int_0^1 n left(1-t^1/nright) frac1sqrt1-t^2 , dt$$
Now performing the limit under the integral sign gives
$$lim_nto infty , n left(1-t^1/nright)=-log (t)$$
so that the integral becomes
$$- int_0^1 fraclog (t)sqrt1-t^2 , dt=fracpi2 log(2)$$
which is the announced result.
edited Mar 27 at 14:58
answered Mar 27 at 14:39
Dr. Wolfgang HintzeDr. Wolfgang Hintze
3,985621
3,985621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f358405%2fevaluating-lim-limits-n-to-infty-n-int-limits-0-pi-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown