Integral of $fracln(1+x^2)1+x^2$How to find $int_0^inftyfracdx(1+x^2)^4$Evaluating the integral $int_0^1arctan(1-x+x^2)dx$Closed-form expression of a definite integralHow do I find the following definite integral?How to integrate $fracx^2log sin x1+x^6$Setting up this integral?Calculate $int_0^1fraccos(arctan x)sqrtxdx$Evaluate $intlimits_0^1fraclog(1-x+x^2)log(1+x-x^2)xdx$What is the simplest technique to evaluate the following definite triple integral?Indefinite integral $int arctan^2 x dx$ in terms of the dilogarithm function
Review your own paper in Mathematics
How to make money from a browser who sees 5 seconds into the future of any web page?
How to draw a matrix with arrows in limited space
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
Do we have to expect a queue for the shuttle from Watford Junction to Harry Potter Studio?
Does Doodling or Improvising on the Piano Have Any Benefits?
Why does Carol not get rid of the Kree symbol on her suit when she changes its colours?
How to get directions in deep space?
Pre-mixing cryogenic fuels and using only one fuel tank
How could a planet have erratic days?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
How much theory knowledge is actually used while playing?
How much of a Devil Fruit must be consumed to gain the power?
Why do Radio Buttons not fill the entire outer circle?
Shouldn’t conservatives embrace universal basic income?
What fields between the rationals and the reals allow a good notion of 2D distance?
Biological Blimps: Propulsion
A Trivial Diagnosis
What does "Scientists rise up against statistical significance" mean? (Comment in Nature)
How to preserve electronics (computers, iPads and phones) for hundreds of years
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
How to explain what's wrong with this application of the chain rule?
Why is so much work done on numerical verification of the Riemann Hypothesis?
Can I cause damage to electrical appliances by unplugging them when they are turned on?
Integral of $fracln(1+x^2)1+x^2$
How to find $int_0^inftyfracdx(1+x^2)^4}$Evaluating the integral $int_0^1arctan(1-x+x^2)dx$Closed-form expression of a definite integralHow do I find the following definite integral?How to integrate $frac{x^2log sin x1+x^6$Setting up this integral?Calculate $int_0^1fraccos(arctan x)sqrtxdx$Evaluate $intlimits_0^1fraclog(1-x+x^2)log(1+x-x^2)xdx$What is the simplest technique to evaluate the following definite triple integral?Indefinite integral $int arctan^2 x dx$ in terms of the dilogarithm function
$begingroup$
Compute $intfracln(1+x^2)1+x^2dx$
Attempt:
I tried to do Integration by Parts
$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$
Since it seems that it not done in terms of elementary functions, what about the definite version:
$$int_0^1fracln(1+x^2)1+x^2dx$$
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Compute $intfracln(1+x^2)1+x^2dx$
Attempt:
I tried to do Integration by Parts
$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$
Since it seems that it not done in terms of elementary functions, what about the definite version:
$$int_0^1fracln(1+x^2)1+x^2dx$$
integration definite-integrals
$endgroup$
2
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
1
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26
add a comment |
$begingroup$
Compute $intfracln(1+x^2)1+x^2dx$
Attempt:
I tried to do Integration by Parts
$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$
Since it seems that it not done in terms of elementary functions, what about the definite version:
$$int_0^1fracln(1+x^2)1+x^2dx$$
integration definite-integrals
$endgroup$
Compute $intfracln(1+x^2)1+x^2dx$
Attempt:
I tried to do Integration by Parts
$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$
Since it seems that it not done in terms of elementary functions, what about the definite version:
$$int_0^1fracln(1+x^2)1+x^2dx$$
integration definite-integrals
integration definite-integrals
edited Mar 14 at 18:15
Paras Khosla
2,348222
2,348222
asked Mar 14 at 16:04
candcand
1,51911023
1,51911023
2
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
1
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26
add a comment |
2
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
1
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26
2
2
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
1
1
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$
Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$
Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$
Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148186%2fintegral-of-frac-ln1x21x2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$
Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$
Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$
Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$
$endgroup$
add a comment |
$begingroup$
$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$
Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$
Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$
Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$
$endgroup$
add a comment |
$begingroup$
$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$
Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$
Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$
Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$
$endgroup$
$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$
Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$
Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$
Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$
answered Mar 14 at 17:24
Paras KhoslaParas Khosla
2,348222
2,348222
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148186%2fintegral-of-frac-ln1x21x2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09
$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11
$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15
1
$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26