Integral of $fracln(1+x^2)1+x^2$How to find $int_0^inftyfracdx(1+x^2)^4$Evaluating the integral $int_0^1arctan(1-x+x^2)dx$Closed-form expression of a definite integralHow do I find the following definite integral?How to integrate $fracx^2log sin x1+x^6$Setting up this integral?Calculate $int_0^1fraccos(arctan x)sqrtxdx$Evaluate $intlimits_0^1fraclog(1-x+x^2)log(1+x-x^2)xdx$What is the simplest technique to evaluate the following definite triple integral?Indefinite integral $int arctan^2 x dx$ in terms of the dilogarithm function

Review your own paper in Mathematics

How to make money from a browser who sees 5 seconds into the future of any web page?

How to draw a matrix with arrows in limited space

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

Do we have to expect a queue for the shuttle from Watford Junction to Harry Potter Studio?

Does Doodling or Improvising on the Piano Have Any Benefits?

Why does Carol not get rid of the Kree symbol on her suit when she changes its colours?

How to get directions in deep space?

Pre-mixing cryogenic fuels and using only one fuel tank

How could a planet have erratic days?

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

How much theory knowledge is actually used while playing?

How much of a Devil Fruit must be consumed to gain the power?

Why do Radio Buttons not fill the entire outer circle?

Shouldn’t conservatives embrace universal basic income?

What fields between the rationals and the reals allow a good notion of 2D distance?

Biological Blimps: Propulsion

A Trivial Diagnosis

What does "Scientists rise up against statistical significance" mean? (Comment in Nature)

How to preserve electronics (computers, iPads and phones) for hundreds of years

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

How to explain what's wrong with this application of the chain rule?

Why is so much work done on numerical verification of the Riemann Hypothesis?

Can I cause damage to electrical appliances by unplugging them when they are turned on?



Integral of $fracln(1+x^2)1+x^2$


How to find $int_0^inftyfracdx(1+x^2)^4}$Evaluating the integral $int_0^1arctan(1-x+x^2)dx$Closed-form expression of a definite integralHow do I find the following definite integral?How to integrate $frac{x^2log sin x1+x^6$Setting up this integral?Calculate $int_0^1fraccos(arctan x)sqrtxdx$Evaluate $intlimits_0^1fraclog(1-x+x^2)log(1+x-x^2)xdx$What is the simplest technique to evaluate the following definite triple integral?Indefinite integral $int arctan^2 x dx$ in terms of the dilogarithm function













1












$begingroup$


Compute $intfracln(1+x^2)1+x^2dx$



Attempt:



I tried to do Integration by Parts



$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$



Since it seems that it not done in terms of elementary functions, what about the definite version:



$$int_0^1fracln(1+x^2)1+x^2dx$$










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The solution containes the dilog-function
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:09










  • $begingroup$
    Could you possibly be interested in a definite version of this?
    $endgroup$
    – Math-fun
    Mar 14 at 16:11










  • $begingroup$
    so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
    $endgroup$
    – cand
    Mar 14 at 16:15







  • 1




    $begingroup$
    That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:26















1












$begingroup$


Compute $intfracln(1+x^2)1+x^2dx$



Attempt:



I tried to do Integration by Parts



$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$



Since it seems that it not done in terms of elementary functions, what about the definite version:



$$int_0^1fracln(1+x^2)1+x^2dx$$










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The solution containes the dilog-function
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:09










  • $begingroup$
    Could you possibly be interested in a definite version of this?
    $endgroup$
    – Math-fun
    Mar 14 at 16:11










  • $begingroup$
    so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
    $endgroup$
    – cand
    Mar 14 at 16:15







  • 1




    $begingroup$
    That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:26













1












1








1





$begingroup$


Compute $intfracln(1+x^2)1+x^2dx$



Attempt:



I tried to do Integration by Parts



$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$



Since it seems that it not done in terms of elementary functions, what about the definite version:



$$int_0^1fracln(1+x^2)1+x^2dx$$










share|cite|improve this question











$endgroup$




Compute $intfracln(1+x^2)1+x^2dx$



Attempt:



I tried to do Integration by Parts



$$u=ln(1+x^2)Rightarrow du=frac2xdx1+x^2\
dv=fracdx1+x^2Rightarrow v=arctan x\
intfracln(1+x^2)1+x^2dx=ln(1+x^2)arctan x-intfrac2xarctan x dx1+x^2$$



Since it seems that it not done in terms of elementary functions, what about the definite version:



$$int_0^1fracln(1+x^2)1+x^2dx$$







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 14 at 18:15









Paras Khosla

2,348222




2,348222










asked Mar 14 at 16:04









candcand

1,51911023




1,51911023







  • 2




    $begingroup$
    The solution containes the dilog-function
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:09










  • $begingroup$
    Could you possibly be interested in a definite version of this?
    $endgroup$
    – Math-fun
    Mar 14 at 16:11










  • $begingroup$
    so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
    $endgroup$
    – cand
    Mar 14 at 16:15







  • 1




    $begingroup$
    That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:26












  • 2




    $begingroup$
    The solution containes the dilog-function
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:09










  • $begingroup$
    Could you possibly be interested in a definite version of this?
    $endgroup$
    – Math-fun
    Mar 14 at 16:11










  • $begingroup$
    so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
    $endgroup$
    – cand
    Mar 14 at 16:15







  • 1




    $begingroup$
    That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 14 at 16:26







2




2




$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09




$begingroup$
The solution containes the dilog-function
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:09












$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11




$begingroup$
Could you possibly be interested in a definite version of this?
$endgroup$
– Math-fun
Mar 14 at 16:11












$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15





$begingroup$
so aparent the indefinite version inst doable in term of elementary functions? What about the definite integral with interval from $0$ to $1$ or like $r$ to $1$ where $0<r<1$.
$endgroup$
– cand
Mar 14 at 16:15





1




1




$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26




$begingroup$
That is what Maple have done:$$i/2ln left( -i/2 left( x+i right) right) ln left( x-i right) +i/4 left( ln left( x-i right) right) ^2-i/2ln left( x-i right) ln left( x^2+1 right) +i/2it dilog left( -i/2 left( x+i right) right) -i/4 left( ln left( x+i right) right) ^2-i/2ln left( x+i right) ln left( i/2 left( x-i right) right) +i/2ln left( x+i right) ln left( x^2+1 right) -i/2it dilog left( i/2 left( x-i right) right) $$
$endgroup$
– Dr. Sonnhard Graubner
Mar 14 at 16:26










1 Answer
1






active

oldest

votes


















1












$begingroup$

$$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$




Solving $2/icdot I_1$:
$$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$




Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$




Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148186%2fintegral-of-frac-ln1x21x2%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$




    Solving $2/icdot I_1$:
    $$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$




    Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$




    Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      $$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$




      Solving $2/icdot I_1$:
      $$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$




      Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$




      Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        $$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$




        Solving $2/icdot I_1$:
        $$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$




        Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$




        Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$






        share|cite|improve this answer









        $endgroup$



        $$textLet I=intdfracln(1+x^2)1+x^2mathrm dx=intleft(underbracedfraciln(1+x^2)2(x+i)_I_1-underbracedfraciln(1+x^2)2(x-i)_I_2right)mathrm dx$$




        Solving $2/icdot I_1$:
        $$beginbmatrixu \ mathrm duendbmatrix=beginbmatrixx+i\ mathrm dxendbmatrix$$ $$beginalignintdfracln(1+x^2)x+imathrm dx&=intdfracln((u-i)^2+1)umathrm du\ & =intdfracln(u-2i)umathrm du+dfrac12ln^2(u)\ & = intdfracln(iu/2+1)umathrm du+ln(-2i)ln u+dfrac12ln^2u \ &= -mathrmLi_2left(-dfraciu2right)+dfrac12ln^2u+ln(-2i)ln(u)\&=-mathrmLi_2left(-dfraci(x+i)2right)+dfrac12 ln^2(x+i)+ln(-2i)ln(x+i)tag1endalign$$




        Similarly solve $2/icdot I_2$ to get the following result: $$intdfracln(1+x^2)x-imathrm dx = -mathrmLi_2left(-dfraci(x-i)2right)+dfrac12ln^2(x-i)+ln(2i)ln(x-i)tag2$$




        Computing $i/2cdot [(1)+(2)]equiv I_1+I_2$ and simplifying gives you the required antiderivative stated as follows (drum-roll moment): $$I=dfraci4left[lnmid x+i mid left(lnmid x+imid+2ln(-2i)right)-lnmid x-imidleft(lnmid x-imid +2ln(2i)right)\ +2mathrmLi_2left(dfracix+12right)-2mathrmLi_2left(-dfracix-12right)right]+C$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 14 at 17:24









        Paras KhoslaParas Khosla

        2,348222




        2,348222



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3148186%2fintegral-of-frac-ln1x21x2%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How should I support this large drywall patch? Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How do I cover large gaps in drywall?How do I keep drywall around a patch from crumbling?Can I glue a second layer of drywall?How to patch long strip on drywall?Large drywall patch: how to avoid bulging seams?Drywall Mesh Patch vs. Bulge? To remove or not to remove?How to fix this drywall job?Prep drywall before backsplashWhat's the best way to fix this horrible drywall patch job?Drywall patching using 3M Patch Plus Primer

            random experiment with two different functions on unit interval Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Random variable and probability space notionsRandom Walk with EdgesFinding functions where the increase over a random interval is Poisson distributedNumber of days until dayCan an observed event in fact be of zero probability?Unit random processmodels of coins and uniform distributionHow to get the number of successes given $n$ trials , probability $P$ and a random variable $X$Absorbing Markov chain in a computer. Is “almost every” turned into always convergence in computer executions?Stopped random walk is not uniformly integrable

            Lowndes Grove History Architecture References Navigation menu32°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661132°48′6″N 79°57′58″W / 32.80167°N 79.96611°W / 32.80167; -79.9661178002500"National Register Information System"Historic houses of South Carolina"Lowndes Grove""+32° 48' 6.00", −79° 57' 58.00""Lowndes Grove, Charleston County (260 St. Margaret St., Charleston)""Lowndes Grove"The Charleston ExpositionIt Happened in South Carolina"Lowndes Grove (House), Saint Margaret Street & Sixth Avenue, Charleston, Charleston County, SC(Photographs)"Plantations of the Carolina Low Countrye